Created
December 3, 2012 06:48
-
-
Save m00dy/4193213 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include<iostream> | |
using namespace std; | |
#include<math.h> | |
#include<string.h> | |
class SegmentTree | |
{ | |
int *A,size; | |
public: | |
SegmentTree(int N) | |
{ | |
int x = (int)(ceil(log2(N)))+1; | |
size = 2*(int)pow(2,x); | |
A = new int[size]; | |
memset(A,-1,sizeof(A)); | |
} | |
void initialize(int node, int start, | |
int end, int *array,int a) | |
{ | |
if (start==end) | |
A[node] = start; | |
else | |
{ | |
int mid = (start+end)/2; | |
initialize(2*node,start,mid,array,a); | |
initialize(2*node+1,mid+1,end,array,a); | |
if ((array[A[2*node]]^a)>(array[A[2*node+1]]^a)) | |
A[node] = A[2 * node]; | |
else | |
A[node] = A[2 * node + 1]; | |
} | |
} | |
int query(int node, int start, | |
int end, int i, int j, int *array,int a) | |
{ | |
int id1,id2; | |
if (i>end || j<start) | |
return -1; | |
if (start>=i && end<=j) | |
return A[node]; | |
int mid = (start+end)/2; | |
id1 = query(2*node,start,mid,i,j,array,a); | |
id2 = query(2*node+1,mid+1,end,i,j,array,a); | |
if (id1==-1) | |
return id2; | |
if (id2==-1) | |
return id1; | |
if ((array[id1]^a)>(array[id2]^a)) | |
return id1; | |
else | |
return id2; | |
} | |
}; | |
int main() | |
{ | |
int T,N,Q; | |
int a,p,q; | |
int* keys; | |
scanf("%d",&T); | |
for(int a=0;a<T;a++) | |
{ | |
scanf("%d %d",&N,&Q); | |
keys = new int[N]; | |
for(int j=0;j<N;j++) | |
{ | |
int keytemp = 0; | |
scanf("%d",&keytemp); | |
keys[j] = keytemp; | |
} | |
for(int z = 0; z < Q; z++){ | |
scanf("%d %d %d",&a,&p,&q); | |
SegmentTree s(N); | |
s.initialize(1,0,N-1,keys,a); | |
printf("%d\n",(keys[s.query(1,0,N-1,p-1,q-1,keys,a)]^a)); | |
} | |
} | |
system("PAUSE"); | |
} |
this solution will get TLE as building the tree costs N Lg(N) .. so this solutions costs Q N lg(N) which is too big..
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
XOR key (50 Points)
Xorq has invented an encryption algorithm which uses bitwise XOR operations extensively. This encryption algorithm uses a sequence of non-negative integers x1, x2, ... xn as key. To implement this algorithm efficiently, Xorq needs to find maximum value for (a xor xj) for given integers a,p and q such that p<=j<=q. Help Xorq to implement this function.
Input
First line of input contains a single integer T (1<=T<=6). T test cases follow.
First line of each test case contains two integers N and Q separated by a single space (1<= N<=100,000; 1<=Q<= 50,000). Next line contains N integers x1, x2, ... xn separated by a single space (0<=xi< 215). Each of next Q lines describe a query which consists of three integers ai,pi and qi (0<=ai< 215, 1<=pi<=qi<= N).
Output
For each query, print the maximum value for (ai xor xj) such that pi<=j<=qi in a single line.
Sample Input
1
15 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10 6 10
1023 7 7
33 5 8
182 5 10
181 1 13
5 10 15
99 8 9
33 10 14
Sample Output
13
1016
41
191
191
15
107
47
Explanation
First Query (10 6 10): x6 xor 10 = 12, x7 xor 10 = 13, x8 xor 10 = 2, x9 xor 10 = 3, x10 xor 10 = 0, therefore answer for this query is 13.
Second Query (1023 7 7): x7 xor 1023 = 1016, therefore answer for this query is 1016.
Third Query (33 5 8): x5 xor 33 = 36, x6 xor 33 = 39, x7 xor 33 = 38, x8 xor 33 = 41, therefore answer for this query is 41.
Fourth Query (182 5 10): x5 xor 182 = 179, x6 xor 182 = 176, x7 xor 182 = 177, x8 xor 182 = 190, x9 xor 182 = 191, x10 xor 182 = 188, therefore answer for this query is 191.