Created
February 8, 2021 01:45
-
-
Save mGalarnyk/29ad009bd714f8e47fd14eab672ce0f2 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import ray | |
from ray.util.sgd import TorchTrainer | |
from ray.util.sgd.torch import TrainingOperator | |
from ray.util.sgd.torch.examples.train_example import LinearDataset | |
import torch | |
from torch.utils.data import DataLoader | |
class CustomTrainingOperator(TrainingOperator): | |
def setup(self, config): | |
# Load data. | |
train_loader = DataLoader(LinearDataset(2, 5), config["batch_size"]) | |
val_loader = DataLoader(LinearDataset(2, 5), config["batch_size"]) | |
# Create model. | |
model = torch.nn.Linear(1, 1) | |
# Create optimizer. | |
optimizer = torch.optim.SGD(model.parameters(), lr=1e-2) | |
# Create loss. | |
loss = torch.nn.MSELoss() | |
# Register model, optimizer, and loss. | |
self.model, self.optimizer, self.criterion = self.register( | |
models=model, | |
optimizers=optimizer, | |
criterion=loss) | |
# Register data loaders. | |
self.register_data(train_loader=train_loader, validation_loader=val_loader) | |
ray.init() | |
trainer1 = TorchTrainer( | |
training_operator_cls=CustomTrainingOperator, | |
num_workers=2, | |
use_gpu=False, | |
config={"batch_size": 64}) | |
stats = trainer1.train() | |
print(stats) | |
trainer1.shutdown() | |
print("success!") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment