Skip to content

Instantly share code, notes, and snippets.

@mGalarnyk
Last active November 11, 2018 03:00
Show Gist options
  • Save mGalarnyk/63973cd7f09cb9f6a1ae9b091fd56fe2 to your computer and use it in GitHub Desktop.
Save mGalarnyk/63973cd7f09cb9f6a1ae9b091fd56fe2 to your computer and use it in GitHub Desktop.
Installing TensorFlow on AWS GPU (TensorFlow 0.10, python 3.5). Requires CUDA toolkit 7.5 and CuDNN v5
#!/bin/bash
# stop on error
set -e
# install the required packages
sudo apt-get update && sudo apt-get -y upgrade
sudo apt-get -y install linux-headers-$(uname -r) linux-image-extra-`uname -r`
# install cuda
wget http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1404/x86_64/cuda-repo-ubuntu1404_7.5-18_amd64.deb
sudo dpkg -i cuda-repo-ubuntu1404_7.5-18_amd64.deb
rm cuda-repo-ubuntu1404_7.5-18_amd64.deb
sudo apt-get update
sudo apt-get install -y cuda
# get cudnn
# Register and download the cuDNN v4 from https://developer.nvidia.com/rdp/cudnn-download
CUDNN_FILE=cudnn-7.0-linux-x64-v4.0-prod.tgz
wget http://developer.download.nvidia.com/compute/redist/cudnn/v4/${CUDNN_FILE}
tar xvzf ${CUDNN_FILE}
rm ${CUDNN_FILE}
sudo cp cuda/include/cudnn.h /usr/local/cuda/include # move library files to /usr/local/cuda
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
rm -rf cuda
# set the appropriate library path
echo 'export CUDA_HOME=/usr/local/cuda
export CUDA_ROOT=/usr/local/cuda
export PATH=$PATH:$CUDA_ROOT/bin:$HOME/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CUDA_ROOT/lib64
' >> ~/.bashrc
# install anaconda
# https://www.continuum.io/downloads
wget https://repo.continuum.io/archive/Anaconda3-4.1.1-Linux-x86_64.sh
bash Anaconda3-4.1.1-Linux-x86_64.sh -b -p /home/ubuntu/anaconda3
rm Anaconda3-4.1.1-Linux-x86_64.sh
echo 'export PATH="/home/ubuntu/anaconda3/bin:$PATH"' >> ~/.bashrc
# Ubuntu/Linux 64-bit, GPU enabled, Python 3.5 tensorflow
# https://www.tensorflow.org/versions/r0.10/get_started/os_setup.html
export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.10.0-cp35-cp35m-linux_x86_64.whl
/home/ubuntu/anaconda3/bin/pip install $TF_BINARY_URL
# install monitoring programs
sudo wget https://git.io/gpustat.py -O /usr/local/bin/gpustat
sudo chmod +x /usr/local/bin/gpustat
sudo nvidia-smi daemon
sudo apt-get -y install htop
# update terminal to latest update of .bashrc file
source .bashrc
exec bash
# If you have any questions, please feel free to email me
# email: [email protected]
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment