Created
October 24, 2014 18:59
-
-
Save maasg/a26ee2f1a11075937565 to your computer and use it in GitHub Desktop.
Example code for a stateful stream processor using Spark Streaming and Cassandra
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| /** | |
| -- Datamodel | |
| -- local keyspace | |
| CREATE KEYSPACE example | |
| WITH REPLICATION = { 'class' : 'SimpleStrategy', 'replication_factor' : 1 }; | |
| -- table schema | |
| CREATE TABLE example.words ( | |
| word text PRIMARY KEY, | |
| count int | |
| ); | |
| */ | |
| // use nc -lk 9876 on a separate shell to provide input to the socketTextStream | |
| // just copy/paste this job on a spark-shell session | |
| import org.apache.spark.SparkConf | |
| import org.apache.spark.streaming.{Seconds, StreamingContext}, StreamingContext._ | |
| import org.apache.spark.storage.StorageLevel | |
| import com.datastax.spark.connector._ | |
| case class WordCount(word:String, count:Int) | |
| val seenWords = sc.cassandraTable[WordCount]("example", "words").map(w => (w.word, w.count)) | |
| @transient val ssc = new StreamingContext(sc, Seconds(10)) | |
| val lines = ssc.socketTextStream("localhost", 9876, StorageLevel.MEMORY_ONLY) | |
| val wordStream = lines.flatMap(_.split(" ")).map(x => (x, 1)).reduceByKey(_ + _) | |
| val runningTotal = wordStream.transform{ rdd => rdd.join(seenWords)}.map{case (k,(v1,v2)) => WordCount(k, v1+v2)} | |
| runningTotal.foreachRDD(rdd => rdd.saveToCassandra("example", "words")) | |
| wordStream.print() | |
| runningTotal.print() | |
| ssc.start() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment