Skip to content

Instantly share code, notes, and snippets.

@macks22
Last active May 13, 2021 13:37
Show Gist options
  • Save macks22/00a17b1d374dfc267a9a to your computer and use it in GitHub Desktop.
Save macks22/00a17b1d374dfc267a9a to your computer and use it in GitHub Desktop.
Probabilistic Matrix Factorization (PMF) + Modified Bayesian BMF
"""
Implementations of:
Probabilistic Matrix Factorization (PMF) [1],
Bayesian PMF (BPMF) [2],
Modified BPFM (mBPMF)
using `pymc3`. mBPMF is, to my knowledge, my own creation. It is an attempt
to circumvent the limitations of `pymc3` w/regards to the Wishart distribution:
https://github.com/pymc-devs/pymc3/commit/642f63973ec9f807fb6e55a0fc4b31bdfa1f261e
[1] http://papers.nips.cc/paper/3208-probabilistic-matrix-factorization.pdf
[2] https://www.cs.toronto.edu/~amnih/papers/bpmf.pdf
"""
import sys
import time
import logging
import pymc3 as pm
import numpy as np
import pandas as pd
import theano
import theano.tensor as t
import scipy as sp
DATA_NOT_FOUND = -1
# data from: https://gist.github.com/macks22/b40ac9c685e920ad3ca2
def read_jester_data(fname='jester-dense-subset-100x20.csv'):
"""Read dense Jester dataset and split train/test data randomly.
We use a 0.9:0.1 Train:Test split.
"""
logging.info('reading data')
try:
data = pd.read_csv(fname)
except IOError as err:
print str(err)
url = 'https://gist.github.com/macks22/b40ac9c685e920ad3ca2'
print 'download from: %s' % url
sys.exit(DATA_NOT_FOUND)
# Calculate split sizes.
logging.info('splitting train/test sets')
n, m = data.shape # # users, # jokes
N = n * m # # cells in matrix
test_size = N / 10 # use 10% of data as test set
train_size = N - test_size # and remainder for training
# Prepare train/test ndarrays.
train = data.copy().values
test = np.ones(data.shape) * np.nan
# Draw random sample of training data to use for testing.
tosample = np.where(~np.isnan(train)) # only sample non-missing values
idx_pairs = zip(tosample[0], tosample[1]) # zip row/col indices
indices = np.arange(len(idx_pairs)) # indices of row/col index pairs
sample = np.random.choice(indices, replace=False, size=test_size) # draw sample
# Transfer random sample from train set to test set.
for idx in sample:
idx_pair = idx_pairs[idx] # retrieve sampled index pair
test[idx_pair] = train[idx_pair] # transfer to test set
train[idx_pair] = np.nan # remove from train set
# Verify everything worked properly
assert(np.isnan(train).sum() == test_size)
assert(np.isnan(test).sum() == train_size)
# Return the two numpy ndarrays
return train, test
def build_pmf_model(train, alpha=2, dim=10, std=0.01):
"""Construct the Probabilistic Matrix Factorization model using pymc3.
Note that the `testval` param for U and V initialize the model away from
0 using a small amount of Gaussian noise.
:param np.ndarray train: Training data (observed) to learn the model on.
:param int alpha: Fixed precision to use for the rating likelihood function.
:param int dim: Dimensionality of the model; rank of low-rank approximation.
:param float std: Standard deviation for Gaussian noise in model initialization.
"""
# Mean value imputation on training data.
train = train.copy()
nan_mask = np.isnan(train)
train[nan_mask] = train[~nan_mask].mean()
# Low precision reflects uncertainty; prevents overfitting.
# We use point estimates from the data to intialize.
# Set to mean variance across users and items.
alpha_u = 1 / train.var(axis=1).mean()
alpha_v = 1 / train.var(axis=0).mean()
logging.info('building the PMF model')
n, m = train.shape
with pm.Model() as pmf:
U = pm.MvNormal(
'U', mu=0, tau=alpha_u * np.eye(dim),
shape=(n, dim), testval=np.random.randn(n, dim) * std)
V = pm.MvNormal(
'V', mu=0, tau=alpha_v * np.eye(dim),
shape=(m, dim), testval=np.random.randn(m, dim) * std)
R = pm.Normal(
'R', mu=t.dot(U, V.T), tau=alpha * np.ones(train.shape),
observed=train)
logging.info('done building PMF model')
return pmf
def build_bpmf_model(train, alpha=2, dim=10, std=0.01):
"""Build the original BPMF model, which we cannot sample from due to
current limitations in pymc3's implementation of the Wishart distribution.
"""
n, m = train.shape
beta_0 = 1 # scaling factor for lambdas; unclear on its use
# Mean value imputation on training data.
train = train.copy()
nan_mask = np.isnan(train)
train[nan_mask] = train[~nan_mask].mean()
logging.info('building the BPMF model')
with pm.Model() as bpmf:
# Specify user feature matrix
lambda_u = pm.Wishart(
'lambda_u', n=dim, V=np.eye(dim), shape=(dim, dim),
testval=np.random.randn(dim, dim) * std)
mu_u = pm.Normal(
'mu_u', mu=0, tau=beta_0 * lambda_u, shape=dim,
testval=np.random.randn(dim) * std)
U = pm.MvNormal(
'U', mu=mu_u, tau=lambda_u, shape=(n, dim),
testval=np.random.randn(n, dim) * std)
# Specify item feature matrix
lambda_v = pm.Wishart(
'lambda_v', n=dim, V=np.eye(dim), shape=(dim, dim),
testval=np.random.randn(dim, dim) * std)
mu_v = pm.Normal(
'mu_v', mu=0, tau=beta_0 * lambda_v, shape=dim,
testval=np.random.randn(dim) * std)
V = pm.MvNormal(
'V', mu=mu_v, tau=lambda_v, shape=(m, dim),
testval=np.random.randn(m, dim) * std)
# Specify rating likelihood function
R = pm.Normal(
'R', mu=t.dot(U, V.T), tau=alpha * np.ones((n, m)),
observed=train)
logging.info('done building the BPMF model')
return bpmf
def build_mod_bpmf_model(train, alpha=2, dim=10, std=0.01):
"""Build the modified BPMF model using pymc3. The original model uses
Wishart priors on the covariance matrices. Unfortunately, the Wishart
distribution in pymc3 is currently not suitable for sampling. This
version decomposes the covariance matrix into:
diag(sigma) \dot corr_matrix \dot diag(std).
We use uniform priors on the standard deviations (sigma) and LKJCorr
priors on the correlation matrices (corr_matrix):
sigma ~ Uniform
corr_matrix ~ LKJCorr(n=1, p=dim)
"""
n, m = train.shape
beta_0 = 1 # scaling factor for lambdas; unclear on its use
# Mean value imputation on training data.
train = train.copy()
nan_mask = np.isnan(train)
train[nan_mask] = train[~nan_mask].mean()
# We will use separate priors for sigma and correlation matrix.
# In order to convert the upper triangular correlation values to a
# complete correlation matrix, we need to construct an index matrix:
n_elem = dim * (dim - 1) / 2
tri_index = np.zeros([dim, dim], dtype=int)
tri_index[np.triu_indices(dim, k=1)] = np.arange(n_elem)
tri_index[np.triu_indices(dim, k=1)[::-1]] = np.arange(n_elem)
logging.info('building the BPMF model')
with pm.Model() as bpmf:
# Specify user feature matrix
sigma_u = pm.Uniform('sigma_u', shape=dim)
corr_triangle_u = pm.LKJCorr(
'corr_u', n=1, p=dim,
testval=np.random.randn(n_elem) * std)
corr_matrix_u = corr_triangle_u[tri_index]
corr_matrix_u = t.fill_diagonal(corr_matrix_u, 1)
cov_matrix_u = t.diag(sigma_u).dot(corr_matrix_u.dot(t.diag(sigma_u)))
lambda_u = t.nlinalg.matrix_inverse(cov_matrix_u)
mu_u = pm.Normal(
'mu_u', mu=0, tau=beta_0 * t.diag(lambda_u), shape=dim,
testval=np.random.randn(dim) * std)
U = pm.MvNormal(
'U', mu=mu_u, tau=lambda_u, shape=(n, dim),
testval=np.random.randn(n, dim) * std)
# Specify item feature matrix
sigma_v = pm.Uniform('sigma_v', shape=dim)
corr_triangle_v = pm.LKJCorr(
'corr_v', n=1, p=dim,
testval=np.random.randn(n_elem) * std)
corr_matrix_v = corr_triangle_v[tri_index]
corr_matrix_v = t.fill_diagonal(corr_matrix_v, 1)
cov_matrix_v = t.diag(sigma_v).dot(corr_matrix_v.dot(t.diag(sigma_v)))
lambda_v = t.nlinalg.matrix_inverse(cov_matrix_v)
mu_v = pm.Normal(
'mu_v', mu=0, tau=beta_0 * t.diag(lambda_v), shape=dim,
testval=np.random.randn(dim) * std)
V = pm.MvNormal(
'V', mu=mu_v, tau=lambda_v, shape=(m, dim),
testval=np.random.randn(m, dim) * std)
# Specify rating likelihood function
R = pm.Normal(
'R', mu=t.dot(U, V.T), tau=alpha * np.ones((n, m)),
observed=train)
logging.info('done building the BPMF model')
return bpmf
if __name__ == "__main__":
logging.basicConfig(
level=logging.INFO,
format='[%(asctime)s]: %(message)s')
# Read data and build PMF model.
train, test = read_jester_data()
pmf = build_pmf_model(train)
# Find mode of posterior using optimization
with pmf:
tstart = time.time()
logging.info('finding PMF MAP using Powell optimization')
start = pm.find_MAP(fmin=sp.optimize.fmin_powell)
elapsed = time.time() - tstart
logging.info('found PMF MAP in %d seconds' % int(elapsed))
# Build the modified BPMF model using same default params as PMF.
mod_bpmf = build_mod_bpmf_model(train)
# Use PMF MAP to initialize sampling for modified BPMF.
for key in mod_bpmf.test_point:
if key not in start:
start[key] = mod_bpmf.test_point[key]
# Attempt to sample with modified BPMF
# (this part raises PositiveDefiniteError when using the normal BPMF model).
with mod_bpmf:
nsamples = 100
njobs = 2
logging.info(
'drawing %d MCMC samples using %d jobs' % (nsamples, njobs))
step = pm.NUTS(scaling=start)
trace = pm.sample(nsamples, step, start=start, njobs=njobs)
@macks22
Copy link
Author

macks22 commented Apr 21, 2015

PMF and mBPMF now appear to be working.

@twiecki
Copy link

twiecki commented Apr 22, 2015

Good to see you got the LKJ prior to work. I also had some success with the Wishart here: pymc-devs/pymc#538

@twiecki
Copy link

twiecki commented Apr 22, 2015

How did you fix the problem with the hessian?

@macks22
Copy link
Author

macks22 commented Apr 28, 2015

Which problem with the Hessian? It appears to me that the mBPMF model samples without a hitch. Although I haven't had a chance to run any meaningful analyses with it yet.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment