Last active
October 6, 2023 15:13
-
-
Save macleginn/5b9eabc1106e88e3ec767e2d00553aaa to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pickle | |
import numpy as np | |
import pandas as pd | |
import torch | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
from tqdm.auto import tqdm | |
with open('sts_attributions/shelf_approx_attr_l-9_N-100.pkl', 'rb') as inp: | |
shelf_approx = pickle.load(inp) | |
with open('sts_attributions/tuned_approx_attr_l-9_N-100.pkl', 'rb') as inp: | |
tuned_approx = pickle.load(inp) | |
with open('sts_attributions/exact_attr_l-9_N-100.pkl', 'rb') as inp: | |
exact = pickle.load(inp) | |
fig, axs = plt.subplots(1, 3, figsize=(15,5)) | |
for ax_i, (attr_set, label) in enumerate(zip( | |
[shelf_approx, tuned_approx, exact], | |
['ShelfApprox', 'TunedApprox', 'Exact'] | |
)): | |
xs = np.zeros(attr_set.shape[0]) | |
ys = np.zeros(attr_set.shape[0]) | |
for i in tqdm(range(attr_set.shape[0])): | |
A = torch.tensor(attr_set.iloc[i].attributions) | |
xs[i] = torch.relu(A).sum().item() | |
ys[i] = -torch.relu(-A).sum().item() | |
df = pd.DataFrame({'SumPositive': xs, 'SumNegative': ys}) | |
sns.regplot(data=df, x='SumPositive', y='SumNegative', lowess=True, | |
scatter_kws={'s': 1, 'alpha': 0.3}, | |
line_kws={'linewidth': 1}, ax=axs[ax_i]) | |
axs[ax_i].set_title(label) | |
plt.savefig('sumpos_vs_sumneg.pdf') | |
# plt.show() | |
fig, axs = plt.subplots(1, 3, figsize=(15,5)) | |
for ax_i, (attr_set, label) in enumerate(zip( | |
[shelf_approx, tuned_approx, exact], | |
['ShelfApprox', 'TunedApprox', 'Exact'] | |
)): | |
xs = np.zeros(attr_set.shape[0]) | |
for i in tqdm(range(attr_set.shape[0])): | |
A = torch.tensor(attr_set.iloc[i].attributions) | |
xs[i] = torch.relu(A).sum().item() | |
axs[ax_i].hist(xs, bins=50) | |
axs[ax_i].set_title(label) | |
axs[ax_i].set_xlim(0, 6) | |
plt.savefig('sumpos_hist.pdf') | |
# plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment