Last active
August 29, 2015 13:59
-
-
Save macrintr/10751834 to your computer and use it in GitHub Desktop.
Simple DEAP strongly-typed GP setup to demonstrate difficulties with ephemerals and scoop
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Author: Thomas Macrina | |
Date created: 04/15/2014 | |
Python Version: 2.7 | |
Simple DEAP strongly-typed GP setup to demonstrate | |
difficulties with ephemerals and scoop. | |
""" | |
import sys | |
import json | |
import math | |
import random | |
import __builtin__ | |
from operator import * | |
from deaper.gp import PrimitiveSetTyped, PrimitiveTree | |
from deaper import gp | |
from deaper import algorithms | |
from deaper import base | |
from deaper import creator | |
from deaper import tools | |
from scoop import futures | |
class Top(): | |
def __init__(self, x, y): | |
self.d = {"x": x, "y": y} | |
def top(x, y): | |
return Top(x, y) | |
def n_int(): | |
return random.randint(5, 20) | |
pset = PrimitiveSetTyped("main", [int], Top) | |
pset.renameArguments(ARG0='a') | |
pset.addPrimitive(top, [int, int], Top, "top") | |
pset.addPrimitive(add, [int, int], int) | |
pset.addEphemeralConstant("i", n_int, int) | |
def evaluate(ind, pset=None): | |
com = gp.compile(expr=ind, pset=pset) | |
d = com(1) | |
return d.d["x"] - d.d["y"] | |
# initialize creator | |
creator.create("FitnessMax", base.Fitness, weights=(1.0,)) | |
creator.create("Individual", gp.PrimitiveTree, fitness=creator.FitnessMax) | |
# initialize toolbox | |
toolbox = base.Toolbox() | |
toolbox.register("rules", gp.genGrow, pset=pset, min_=2, max_= 4, type_=Top) | |
toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.rules) | |
toolbox.register("population", tools.initRepeat, list, toolbox.individual) | |
toolbox.register("evaluate", evaluate, pset=pset) | |
# mutation, crossover, selection | |
toolbox.register("select", tools.selTournament, tournsize=2) | |
toolbox.register("mate", gp.cxOnePoint) | |
toolbox.register("expr_mut", gp.genFull, min_=0, max_=2) | |
toolbox.register("mutate", gp.mutUniform, expr=toolbox.expr_mut, pset=pset) | |
toolbox.register("map", futures.map) | |
def evolve(NGEN = 3, NPOP = 5, CXPB = 0.90, MUTPB = 0.01): | |
pop = toolbox.population(NPOP) | |
for g in range(NGEN): | |
# Select the next generation individuals | |
offspring = toolbox.select(pop, len(pop)) | |
# Clone the selected individuals | |
offspring = map(toolbox.clone, offspring) | |
# Apply crossover on the offspring | |
for child1, child2 in zip(offspring[::2], offspring[1::2]): | |
if random.random() < CXPB: | |
toolbox.mate(child1, child2) | |
del child1.fitness.values | |
del child2.fitness.values | |
# Apply mutation on the offspring | |
for mutant in offspring: | |
if random.random() < MUTPB: | |
toolbox.mutate(mutant) | |
del mutant.fitness.values | |
# Evaluate the individuals with an invalid fitness | |
invalid_ind = [ind for ind in offspring if not ind.fitness.valid] | |
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) | |
n = 0 | |
for ind, fit in zip(invalid_ind, fitnesses): | |
n += 1 | |
ind.fitness.values = (fit,) | |
print str(n) + " / " + str(len(invalid_ind)) + "\n" | |
print ind, fit | |
print "\n" | |
# The population is entirely replaced by the offspring | |
pop[:] = offspring | |
if __name__ == "__main__": | |
evolve() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment