Skip to content

Instantly share code, notes, and snippets.

@madaan
Created December 13, 2013 16:17
Show Gist options
  • Save madaan/7946708 to your computer and use it in GitHub Desktop.
Save madaan/7946708 to your computer and use it in GitHub Desktop.
Using adaboost with svm as weak learner [fails]
def cvalidate():
targetset = np.genfromtxt(open('trainLabels.csv','r'), dtype='f16')
y = [x for x in targetset]
trainset = np.genfromtxt(open('train.csv','r'), delimiter=',', dtype='f16')
X = np.array([x for x in trainset])
X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y, test_size = 0.3, random_state = 0)
X_train, X_test = decomposition_pca(X_train, X_test)
parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]}
c_range = 10.0 ** np.arange(6.5,7.5,.25)
gamma_range = 10.0 ** np.arange(-2.5,0.5,.25)
parameters = {'kernel':['rbf'], 'C':c_range, 'gamma':gamma_range}
svr = SVC(probability=True)
clf = grid_search.GridSearchCV(svr, parameters)
bdt = AdaBoostClassifier(base_estimator = clf,
algorithm="SAMME",
n_estimators=200)
#bdt = AdaBoostClassifier(base_estimator=SVC(probability=True))
bdt.fit(X_train, y_train)
print bdt.score(X_test, y_test)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment