Created
December 13, 2013 16:52
-
-
Save madaan/7947316 to your computer and use it in GitHub Desktop.
Using svm as a weak learner for Adaboost. Working edition.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def main(): | |
targetset = np.genfromtxt(open('trainLabels.csv','r'), dtype='f16') | |
target = [x for x in targetset] | |
trainset = np.genfromtxt(open('train.csv','r'), delimiter=',', dtype='f16') | |
train = np.array([x for x in trainset]) | |
testset = np.genfromtxt(open('test.csv','r'), delimiter = ',', dtype='f16') | |
train, testset = decomposition_pca(train, testset) | |
#bdt = AdaBoostClassifier(DecisionTreeClassifier(max_depth=10), | |
# algorithm="SAMME", | |
# n_estimators=200) | |
parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]} | |
c_range = 10.0 ** np.arange(6.5,7.5,.25) | |
gamma_range = 10.0 ** np.arange(-2.5,0.5,.25) | |
parameters = {'kernel':['rbf'], 'C':c_range, 'gamma':gamma_range} | |
svr = SVC(probability=True) | |
clf = grid_search.GridSearchCV(svr, parameters) | |
clf.fit(train, target) | |
bdt = AdaBoostClassifier(base_estimator = clf.best_estimator_, | |
algorithm="SAMME", | |
n_estimators=200) | |
bdt.fit(train, target) | |
print 'Id,Solution' | |
for i, t in enumerate(testset): | |
print '%d,%d' % (i + 1, int(bdt.predict(t)[0])) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment