Created
April 9, 2023 11:26
-
-
Save madagra/d9e688ce38b1311bf6855f5acdb2254c to your computer and use it in GitHub Desktop.
Simple NN for fitting a function
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class SimpleNN(nn.Module): | |
def __init__( | |
self, | |
num_hidden: int = 1, | |
dim_hidden: int = 1, | |
act: nn.Module = nn.Tanh(), | |
) -> None: | |
"""Basic neural network with linear layers and non-linear activation function | |
Args: | |
num_hidden (int, optional): The number of hidden layers in the mode | |
dim_hidden (int, optional): The number of neurons for each hidden layer | |
act (nn.Module, optional): The type of non-linear activation function to be used | |
""" | |
super().__init__() | |
self.layer_in = nn.Linear(1, dim_hidden) | |
self.layer_out = nn.Linear(dim_hidden, 1) | |
num_middle = num_hidden - 1 | |
self.middle_layers = nn.ModuleList( | |
[nn.Linear(dim_hidden, dim_hidden) for _ in range(num_middle)] | |
) | |
self.act = act | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
out = self.act(self.layer_in(x)) | |
for layer in self.middle_layers: | |
out = self.act(layer(out)) | |
return self.layer_out(out) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment