Created
June 29, 2018 06:26
-
-
Save madcoda/df5973cc42508546600d7a1ec30402ce to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/bin/bash | |
# If you have nvidia-docker 1.0 installed: we need to remove it and all existing GPU containers | |
docker volume ls -q -f driver=nvidia-docker | xargs -r -I{} -n1 docker ps -q -a -f volume={} | xargs -r docker rm -f | |
sudo apt-get purge -y nvidia-docker | |
# Add the package repositories | |
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | \ | |
sudo apt-key add - | |
distribution=$(. /etc/os-release;echo $ID$VERSION_ID) | |
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | \ | |
sudo tee /etc/apt/sources.list.d/nvidia-docker.list | |
sudo apt-get update | |
# Install nvidia-docker2 and reload the Docker daemon configuration | |
sudo apt-get install -y nvidia-docker2 | |
sudo pkill -SIGHUP dockerd | |
# Test nvidia-smi with the latest official CUDA image | |
docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment