Created
July 30, 2023 17:47
-
-
Save madebyollin/e6e217a77db94e2a960ab6ccbd627db9 to your computer and use it in GitHub Desktop.
Helper for logging output activation-map statistics for a PyTorch module, using forward hooks
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def summarize_tensor(x): | |
return f"\033[34m{str(tuple(x.shape)).ljust(24)}\033[0m (\033[31mmin {x.min().item():+.4f}\033[0m / \033[32mmean {x.mean().item():+.4f}\033[0m / \033[33mmax {x.max().item():+.4f}\033[0m)" | |
class ModelActivationPrinter: | |
def __init__(self, module, submodules_to_log): | |
self.id_to_name = { | |
id(module): str(name) for name, module in module.named_modules() | |
} | |
self.submodules = submodules_to_log | |
self.hooks = [] | |
def __enter__(self, *args, **kwargs): | |
def log_activations(m, m_in, m_out): | |
label = self.id_to_name.get(id(m), "(unnamed)") + " output" | |
if isinstance(m_out, (tuple, list)): | |
m_out = m_out[0] | |
label += "[0]" | |
print(label.ljust(48) + summarize_tensor(m_out)) | |
for m in self.submodules: | |
self.hooks.append(m.register_forward_hook(log_activations)) | |
return self | |
def __exit__(self, *args, **kwargs): | |
for hook in self.hooks: | |
hook.remove() | |
if __name__ == "__main__": | |
import torch | |
model = torch.nn.Sequential( | |
torch.nn.Linear(1, 64), torch.nn.ReLU(), torch.nn.Linear(64, 1) | |
) | |
with ModelActivationPrinter(model, model): | |
y = model(torch.zeros(1, 1)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
If you want to plot little images too