Skip to content

Instantly share code, notes, and snippets.

@madhawav
Last active November 11, 2024 14:36
Show Gist options
  • Save madhawav/1546a4b99c8313f06c0b2d7d7b4a09e2 to your computer and use it in GitHub Desktop.
Save madhawav/1546a4b99c8313f06c0b2d7d7b4a09e2 to your computer and use it in GitHub Desktop.
# Code adapted from Tensorflow Object Detection Framework
# https://github.com/tensorflow/models/blob/master/research/object_detection/object_detection_tutorial.ipynb
# Tensorflow Object Detection Detector
import numpy as np
import tensorflow as tf
import cv2
import time
class DetectorAPI:
def __init__(self, path_to_ckpt):
self.path_to_ckpt = path_to_ckpt
self.detection_graph = tf.Graph()
with self.detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(self.path_to_ckpt, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
self.default_graph = self.detection_graph.as_default()
self.sess = tf.Session(graph=self.detection_graph)
# Definite input and output Tensors for detection_graph
self.image_tensor = self.detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
self.detection_boxes = self.detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
self.detection_scores = self.detection_graph.get_tensor_by_name('detection_scores:0')
self.detection_classes = self.detection_graph.get_tensor_by_name('detection_classes:0')
self.num_detections = self.detection_graph.get_tensor_by_name('num_detections:0')
def processFrame(self, image):
# Expand dimensions since the trained_model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image, axis=0)
# Actual detection.
start_time = time.time()
(boxes, scores, classes, num) = self.sess.run(
[self.detection_boxes, self.detection_scores, self.detection_classes, self.num_detections],
feed_dict={self.image_tensor: image_np_expanded})
end_time = time.time()
print("Elapsed Time:", end_time-start_time)
im_height, im_width,_ = image.shape
boxes_list = [None for i in range(boxes.shape[1])]
for i in range(boxes.shape[1]):
boxes_list[i] = (int(boxes[0,i,0] * im_height),
int(boxes[0,i,1]*im_width),
int(boxes[0,i,2] * im_height),
int(boxes[0,i,3]*im_width))
return boxes_list, scores[0].tolist(), [int(x) for x in classes[0].tolist()], int(num[0])
def close(self):
self.sess.close()
self.default_graph.close()
if __name__ == "__main__":
model_path = '/path/to/faster_rcnn_inception_v2_coco_2017_11_08/frozen_inference_graph.pb'
odapi = DetectorAPI(path_to_ckpt=model_path)
threshold = 0.7
cap = cv2.VideoCapture('/path/to/input/video')
while True:
r, img = cap.read()
img = cv2.resize(img, (1280, 720))
boxes, scores, classes, num = odapi.processFrame(img)
# Visualization of the results of a detection.
for i in range(len(boxes)):
# Class 1 represents human
if classes[i] == 1 and scores[i] > threshold:
box = boxes[i]
cv2.rectangle(img,(box[1],box[0]),(box[3],box[2]),(255,0,0),2)
cv2.imshow("preview", img)
key = cv2.waitKey(1)
if key & 0xFF == ord('q'):
break
@KeitelDOG
Copy link

@wahas-mughal yes, I had it working like this, to shows only detected humans, by using a custom Map with only person label. The performance is still the same, as in background the model still detect all classes, but the custom map only tells it to show person result. It's still in my old Macbook with poor performance, and someday I'll check in the my new Macbook to see how useful the performance can get.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment