Created
May 7, 2017 03:39
-
-
Save madratman/f459fe64a6952c938170d289a48ac4b1 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from keras.models import Sequential | |
from keras.layers.core import Flatten, Dense, Dropout | |
from keras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D | |
from keras.optimizers import SGD | |
from keras.layers import Activation | |
from keras.layers.normalization import BatchNormalization | |
import cv2, numpy as np | |
def build_model(): | |
model = Sequential() | |
model.add(ZeroPadding2D((1,1), input_shape=(1,224,224), name='conv1_pad1_finetune')) | |
model.add(Convolution2D(32, 3, 3,name='conv1_act1_finetune')) | |
model.add(BatchNormalization(axis=1)) | |
model.add(Activation('relu')) | |
model.add(MaxPooling2D((2,2), strides=(2,2),name='conv1_max')) | |
model.add(ZeroPadding2D((1,1),name='conv2_pad1')) | |
model.add(Convolution2D(64, 3, 3,name='conv2_act1')) | |
model.add(BatchNormalization(axis=1)) | |
model.add(Activation('relu')) | |
model.add(MaxPooling2D((2,2), strides=(2,2),name='conv2_max')) | |
model.add(ZeroPadding2D((1,1),name='conv3_pad1')) | |
model.add(Convolution2D(128, 3, 3,name='conv3_act1')) | |
model.add(BatchNormalization(axis=1)) | |
model.add(Activation('relu')) | |
model.add(ZeroPadding2D((1,1),name='conv3_pad3')) | |
model.add(Convolution2D(128, 3, 3,name='conv3_act3')) | |
model.add(BatchNormalization(axis=1)) | |
model.add(Activation('relu')) | |
model.add(MaxPooling2D((2,2), strides=(2,2),name='conv3_max')) | |
model.add(ZeroPadding2D((1,1),name='conv4_pad1')) | |
model.add(Convolution2D(256, 3, 3,name='conv4_act1')) | |
model.add(BatchNormalization(axis=1)) | |
model.add(Activation('relu')) | |
model.add(ZeroPadding2D((1,1),name='conv4_pad3')) | |
model.add(Convolution2D(256, 3, 3,name='conv4_act3')) | |
model.add(BatchNormalization(axis=1)) | |
model.add(Activation('relu')) | |
model.add(MaxPooling2D((2,2), strides=(2,2),name='conv4_max')) | |
model.add(ZeroPadding2D((1,1),name='conv5_pad2')) | |
model.add(Convolution2D(256, 3, 3,name='conv5_act2')) | |
model.add(BatchNormalization(axis=1)) | |
model.add(Activation('relu')) | |
model.add(ZeroPadding2D((1,1),name='conv5_pad3')) | |
model.add(Convolution2D(256, 3, 3,name='conv5_act3')) | |
model.add(BatchNormalization(axis=1)) | |
model.add(Activation('relu')) | |
model.add(MaxPooling2D((2,2), strides=(2,2),name='conv5_max')) | |
model.add(Flatten(name='fc_flatten_finetune')) | |
model.add(Dense(1024,name='fc_act1_finetune')) | |
model.add(BatchNormalization(axis=1)) | |
model.add(Activation('relu')) | |
model.add(Dropout(0.5,name='fc_dp1_finetune')) | |
model.add(Dense(1024,name='fc_act2_finetune')) | |
model.add(BatchNormalization(axis=1)) | |
model.add(Activation('relu')) | |
model.add(Dropout(0.5,name='fc_dp2_finetune')) | |
model.add(Dense(1000,name='fc_max_finetune')) | |
model.add(BatchNormalization(axis=1)) | |
model.add(Activation('sigmoid')) | |
model.summary() | |
return model |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment