Last active
July 30, 2025 20:12
-
-
Save madskjeldgaard/1eea03270c4cc876e5d352b4bc6a5065 to your computer and use it in GitHub Desktop.
Buchla inspired supercollider synth
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| // A west coast / Buchla inspired synth originally by Mark Wheeler, released in their Norns synth "passersby" https://github.com/markwheeler/passersby/blob/master/lib/Engine_Passersby.sc | |
| /* | |
| // Test | |
| ( | |
| Pmono(\west, | |
| \freq, Pwhite(100.0,400.0), | |
| \dur, 0.125, | |
| \gate, 1, | |
| \pitchBendRatio, 1, | |
| \glide, 0, | |
| \fm1Ratio, 0.66, | |
| \fm2Ratio, 3.3, | |
| \fm1Amount, Pwhite(), | |
| \fm2Amount, Pwhite(), | |
| \vel, 0.7, | |
| \pressure, Pwhite(), | |
| \timbre, Pwhite(), | |
| \waveShape, Pwhite(), | |
| \waveFolds, Pwhite(), | |
| \envType, Pwhite(0,1), | |
| \attack, 0.04, | |
| \peak, 10000, | |
| \decay, 2, | |
| \amp, 1, | |
| \lfoShape, Pwhite(), | |
| \lfoFreq, 0.5, | |
| \lfoToFreqAmount, Pwhite(), | |
| \lfoToWaveShapeAmount, Pwhite(), | |
| \lfoToWaveFoldsAmount, Pwhite(), | |
| \lfoToFm1Amount, Pwhite(), | |
| \lfoToFm2Amount, Pwhite(), | |
| \lfoToAttackAmount, Pwhite(), | |
| \lfoToPeakAmount, Pwhite(), | |
| \lfoToDecayAmount, Pwhite(), | |
| \lfoToReverbMixAmount, Pwhite(), | |
| \drift, Pwhite() | |
| ).play | |
| ) | |
| */ | |
| ( | |
| // Synth voice | |
| SynthDef(\west, { | |
| arg out, t_gate=1, gate=1, killGate=1, freq = 220, pitchBendRatio = 1, glide = 0, fm1Ratio = 0.66, fm2Ratio = 3.3, fm1Amount = 0.0, fm2Amount = 0.0, | |
| vel = 0.7, pressure = 0, timbre = 0, waveShape = 0, waveFolds = 0, envType = 0, attack = 0.04, peak = 10000, decay = 1, amp = 1, lfoShape = 0, lfoFreq = 0.5, | |
| lfoToFreqAmount = 0, lfoToWaveShapeAmount = 0, lfoToWaveFoldsAmount = 0, lfoToFm1Amount = 0, lfoToFm2Amount = 0, | |
| lfoToAttackAmount = 0, lfoToPeakAmount = 0, lfoToDecayAmount = 0, lfoToReverbMixAmount = 0, drift = 0, dur=10; | |
| var i_nyquist = SampleRate.ir * 0.5, signal, controlLag = 0.005, i_numHarmonics = 44, | |
| modFreq, mod1, mod2, mod1Index, mod2Index, mod1Freq, mod2Freq, sinOsc, triOsc, additiveOsc, additivePhase, | |
| filterEnvVel, filterEnvLow, lpgEnvelope, lpgSignal, asrEnvelope, asrFilterFreq, asrSignal, killEnvelope, i_driftRate = 0.15, maxDecay=8; | |
| // Make lfos | |
| var lfo = Select.kr(lfoShape, [ | |
| LFTri.kr(lfoFreq), | |
| LFSaw.kr(lfoFreq), | |
| LFPulse.kr(lfoFreq), | |
| LFDNoise0.kr(lfoFreq * 2) | |
| ]); | |
| var lfoArray = Array.fill(9, 0); | |
| lfoArray[0] = (lfo * lfoToFreqAmount * 18).midiratio; // Freq ratio | |
| lfoArray[1] = (lfo * lfoToWaveShapeAmount) + LFNoise1.kr(freq: i_driftRate, mul: drift); // Wave Shape | |
| lfoArray[2] = ((lfo * lfoToWaveFoldsAmount) + LFNoise1.kr(freq: i_driftRate, mul: drift)) * 2; // Wave Folds | |
| lfoArray[3] = ((lfo * lfoToFm1Amount) + LFNoise1.kr(freq: i_driftRate, mul: drift)) * 0.5; // FM1 Amount | |
| lfoArray[4] = ((lfo * lfoToFm2Amount) + LFNoise1.kr(freq: i_driftRate, mul: drift)) * 0.5; // FM2 Amount | |
| lfoArray[5] = ((lfo * lfoToAttackAmount) + LFNoise1.kr(freq: i_driftRate, mul: drift)) * 2.2; // Attack | |
| lfoArray[6] = (((lfo * lfoToPeakAmount) + LFNoise1.kr(freq: i_driftRate, mul: drift)) * 24).midiratio; // Peak multiplier | |
| lfoArray[7] = ((lfo * lfoToDecayAmount) + LFNoise1.kr(freq: i_driftRate, mul: drift)) * 2.2; // Decay | |
| lfoArray[8] = (lfo * lfoToReverbMixAmount) + LFNoise1.kr(freq: i_driftRate, mul: drift); // Reverb Mix | |
| // LFO ins | |
| freq = (freq * lfoArray[0]).clip(0, i_nyquist); | |
| waveShape = (waveShape + lfoArray[1]).clip(0, 1); | |
| waveFolds = (waveFolds + lfoArray[2]).clip(0, 3); | |
| fm1Amount = (fm1Amount + lfoArray[3]).clip(0, 1); | |
| fm2Amount = (fm2Amount + lfoArray[4]).clip(0, 1); | |
| attack = (attack + lfoArray[5]).clip(0.003, 8); | |
| peak = (peak * lfoArray[6]).clip(100, 10000); | |
| decay = (decay + lfoArray[7]).clip(0.01, maxDecay); | |
| // Lag inputs | |
| freq = Lag.kr(freq * pitchBendRatio, 0.007 + glide); | |
| fm1Ratio = Lag.kr(fm1Ratio, controlLag); | |
| fm2Ratio = Lag.kr(fm2Ratio, controlLag); | |
| fm1Amount = Lag.kr(fm1Amount.squared, controlLag); | |
| fm2Amount = Lag.kr(fm2Amount.squared, controlLag); | |
| vel = Lag.kr(vel, controlLag); | |
| waveShape = Lag.kr(waveShape, controlLag); | |
| waveFolds = Lag.kr(waveFolds, controlLag); | |
| attack = Lag.kr(attack, controlLag); | |
| peak = Lag.kr(peak, controlLag); | |
| decay = Lag.kr(decay, controlLag); | |
| // Modulators | |
| mod1Index = fm1Amount * 22; | |
| mod1Freq = freq * fm1Ratio * LFNoise2.kr(freq: 0.1, mul: 0.001, add: 1); | |
| mod1 = SinOsc.ar(freq: mod1Freq, phase: 0, mul: mod1Index * mod1Freq, add: 0); | |
| mod2Index = fm2Amount * 12; | |
| mod2Freq = freq * fm2Ratio * LFNoise2.kr(freq: 0.1, mul: 0.005, add: 1); | |
| mod2 = SinOsc.ar(freq: mod2Freq, phase: 0, mul: mod2Index * mod2Freq, add: 0); | |
| modFreq = freq + mod1 + mod2; | |
| // Sine and triangle | |
| sinOsc = SinOsc.ar(freq: modFreq, phase: 0, mul: 0.5); | |
| triOsc = VarSaw.ar(freq: modFreq, iphase: 0, width: 0.5, mul: 0.5); | |
| // Additive square and saw | |
| additivePhase = LFSaw.ar(freq: modFreq, iphase: 1, mul: pi, add: pi); | |
| additiveOsc = Mix.fill(i_numHarmonics, { | |
| arg index; | |
| var harmonic, harmonicFreq, harmonicCutoff, attenuation; | |
| harmonic = index + 1; | |
| harmonicFreq = freq * harmonic; | |
| harmonicCutoff = i_nyquist - harmonicFreq; | |
| // Attenuate harmonics that will go over nyquist once FM is applied | |
| attenuation = Select.kr(index, [1, // Save the fundamental | |
| (harmonicCutoff - (harmonicFreq * 0.25) - harmonicFreq).expexp(0.000001, harmonicFreq * 0.5, 0.000001, 1)]); | |
| (sin(additivePhase * harmonic % 2pi) / harmonic) * attenuation * (harmonic % 2 + waveShape.linlin(0.666666, 1, 0, 1)).min(1); | |
| } | |
| ); | |
| // Mix carriers | |
| signal = LinSelectX.ar(waveShape * 3, [sinOsc, triOsc, additiveOsc]); | |
| // Fold | |
| signal = Fold.ar(in: signal * (1 + (timbre * 0.5) + (waveFolds * 2)), lo: -0.5, hi: 0.5); | |
| // Hack away some aliasing | |
| signal = LPF.ar(in: signal, freq: 12000); | |
| // Noise | |
| signal = signal + PinkNoise.ar(mul: 0.003); | |
| // LPG | |
| filterEnvVel = vel.linlin(0, 1, 0.5, 1); | |
| filterEnvLow = (peak * filterEnvVel).min(300); | |
| lpgEnvelope = EnvGen.ar(envelope: Env.new(levels: [0, 1, 0], times: [0.003, decay], curve: [4, -20]), gate: t_gate, timeScale: dur); | |
| lpgSignal = RLPF.ar(in: signal, freq: lpgEnvelope.linlin(0, 1, filterEnvLow, peak * filterEnvVel), rq: 0.9); | |
| lpgSignal = lpgSignal * EnvGen.ar(envelope: Env.new(levels: [0, 1, 0], times: [0.002, decay], curve: [4, -10]), gate: t_gate, timeScale: dur); | |
| // ASR with 4-pole filter | |
| asrEnvelope = EnvGen.ar(envelope: Env.new(levels: [0, 1, 0], times: [attack, decay], curve: -4, releaseNode: 1), gate: gate); | |
| asrFilterFreq = asrEnvelope.linlin(0, 1, filterEnvLow, peak * filterEnvVel); | |
| asrSignal = RLPF.ar(in: signal, freq: asrFilterFreq, rq: 0.95); | |
| asrSignal = RLPF.ar(in: asrSignal, freq: asrFilterFreq, rq: 0.95); | |
| asrSignal = asrSignal * EnvGen.ar(envelope: Env.asr(attackTime: attack, sustainLevel: 1, releaseTime: decay, curve: -4), gate: gate); | |
| signal = Select.ar(envType, [lpgSignal, asrSignal]); | |
| signal = signal * vel.linlin(0, 1, 0.2, 1) ; | |
| // Saturation amp | |
| signal = tanh(signal * pressure.linlin(0, 1, 1.5, 3) * amp).softclip; | |
| Out.ar(out, signal); | |
| }).add; | |
| ) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment