Created
          May 21, 2025 05:31 
        
      - 
      
- 
        Save maedoc/3ae6c6638ac21ccc0e3e31fe8805e8d6 to your computer and use it in GitHub Desktop. 
    another take on generating pathfinder task images
  
        
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
  | import tqdm | |
| import numpy as np | |
| import pylab as pl | |
| import jax, jax.numpy as jp | |
| def loss(c): | |
| v1 = c[:-2] - c[1:-1] | |
| v2 = c[2:] - c[1:-1] | |
| nv1 = jp.linalg.norm(v1, axis=1) | |
| nv2 = jp.linalg.norm(v2, axis=1) | |
| n12 = nv1 * nv2 + 1e-6 | |
| dv = (v1 * v2).sum(axis=1) / n12 | |
| return (dv).sum() | |
| def opt(c0): | |
| c = jp.array(c0) | |
| vgloss = jax.jit(jax.value_and_grad(loss)) | |
| for i in range(100): | |
| v, g = vgloss(c) | |
| c -= 0.01 * g | |
| return c # np.array(c) | |
| def make_snake(): | |
| num_anchors = 3 | |
| num_subgrid = 3 | |
| ax, ay = axy = np.random.rand(2, num_anchors) | |
| bx = np.random.rand(num_subgrid, num_anchors - 1) | |
| cxy = np.diff(axy, axis=-1).T * bx[..., None] + axy.T[:-1] | |
| cxy = np.concatenate([axy.T[:-1][None], cxy], axis=0) | |
| cx, cy = cxy = np.append(cxy.reshape(-1, 2).T, axy[:, -1:], axis=1) | |
| c = cxy.T | |
| ox, oy = opt(cxy.T).T | |
| return ox, oy | |
| def make_snakes(n): | |
| num_anchors = 3 | |
| num_subgrid = 3 | |
| axy = np.random.rand(n, 2, num_anchors) | |
| bx = np.random.rand(n, num_subgrid, num_anchors - 1) | |
| def setup(axy, bx): | |
| import jax.numpy as np | |
| cxy = np.diff(axy, axis=-1).T * bx[..., None] + axy.T[:-1] | |
| cxy = np.concatenate([axy.T[:-1][None], cxy], axis=0) | |
| cx, cy = cxy = np.append(cxy.reshape(-1, 2).T, axy[:, -1:], axis=1) | |
| c = cxy.T | |
| return opt(cxy.T).T | |
| oxy = jax.vmap(setup)(axy, bx) | |
| return np.array(oxy) | |
| import numpy as np | |
| def mpl_to_numpy_agg(fig): | |
| from matplotlib.backends.backend_agg import FigureCanvasAgg | |
| canvas = FigureCanvasAgg(fig) | |
| canvas.draw() | |
| buf_rgba = canvas.buffer_rgba() | |
| width, height = fig.canvas.get_width_height() | |
| image_array = np.asarray(buf_rgba).reshape(height, width, 4) # RGBA | |
| return image_array | |
| # np.random.seed(46) | |
| pl.rcParams["lines.dashed_pattern"] = [5, 4] | |
| lopts = {'linewidth': 1.0, 'antialiased': False} # , 'dashes': [5,3,1]} | |
| num_im = 2000 | |
| oxy = make_snakes(num_im*2) | |
| ims = [] | |
| masks = [] | |
| for i in tqdm.trange(num_im): | |
| fig = pl.figure(figsize=(2, 2), dpi=64, frameon=False) | |
| ox, oy = oxy[i*2] | |
| mx, my = oxy[i*2+1] | |
| pl.plot(ox, oy, 'k--', **lopts) | |
| pl.plot(ox[[0, -1]], oy[[0, -1]], 'ko', **lopts) | |
| mask = np.random.rand() < 0.5 | |
| masks.append(mask) | |
| if mask: | |
| i_mask = ox.size // 2 | |
| pl.plot(ox[i_mask], oy[i_mask], 'wo', markersize=40, **lopts) | |
| pl.plot(mx, my, 'k--', **lopts) | |
| pl.gca().set_axis_off() | |
| pl.tight_layout() | |
| im = mpl_to_numpy_agg(fig) | |
| ims.append(im[..., 0]) | |
| pl.close(fig) | |
| # pl.savefig(f'/tmp/path-{int(mask)}-{i:04d}.png') | |
| ims = np.array(ims) | |
| masks = np.array(masks) | |
| np.save('ims.npy', ims) | |
| np.save('masks.npy', masks) | 
  
    Sign up for free
    to join this conversation on GitHub.
    Already have an account?
    Sign in to comment
  
            
example images (disconnected on left, connected on right)