Created
October 14, 2021 17:10
-
-
Save maedoc/59c574a7502f843b9d1a7c746c777b3b to your computer and use it in GitHub Desktop.
Spherical harmonic transform with NumPy/SciPy
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from scipy.special import sph_harm | |
class ShtDiff: | |
def __init__(self, lmax=16, nlat=64, D=-1e-2, nlon=None): | |
self.lmax = lmax | |
self.nlat = nlat | |
self.D = D | |
self.nlon = nlon or (2 * nlat) | |
self.setup_arrays() | |
def setup_arrays(self): | |
points, weights = np.polynomial.legendre.leggauss(self.nlat) | |
self.gauss_weights = weights[::-1] | |
self.phi_grid = np.arcsin(points) + np.pi/2 | |
# Legendre | |
L = [] | |
for m in range(self.lmax): | |
l = np.r_[m:(self.lmax+1)] | |
fwd = self.gauss_weights[None, :] * sph_harm(m, l[:, None], 0, self.phi[None, :]).conjugate() | |
bwd = sph_harm(m, l[None, :], 0, self.phi[:, None]) | |
dll = self.D * l * (l + 1) | |
L.append(bwd.dot(dll[:, None] * fwd)) | |
self.legendre = np.array(L) | |
# Fourier | |
C = np.cos(2*np.pi/self.nlon*np.c_[:self.lmax]*np.r_[:self.nlon]) | |
S = -np.sin(2*np.pi/self.nlon*np.c_[:self.lmax]*np.r_[:self.nlon]) | |
self.fourier = (C + 1j*S) | |
def __call__(self, x): | |
self.fourier.T.dot( | |
np.einsum( | |
'acb,ab->ac', | |
self.legendre, | |
self.fourier.dot(x.T))).real.T / self.nlon |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment