Created
November 26, 2020 09:49
-
-
Save maedoc/90addb0bbaae7c553be1eaa800e2059c to your computer and use it in GitHub Desktop.
Benchmarking NumPy and TensorFlow2 on simple network model
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import time | |
import tqdm | |
import numpy as np | |
import tensorflow as tf | |
import numba as nb | |
#tf.config.experimental.set_visible_devices([], 'GPU') | |
tf.zeros((1,), tf.float32) | |
def bench(nr, inner_size): | |
nt, nn = 10000, 96 | |
a, tau, k, dt = 0.5, 3.0, 0.1, 0.01 | |
def run_np_inner(x, y): | |
for t in range(inner_size): | |
mf = x.mean(axis=0) | |
dx = tau * (x - x**3/3 + y) | |
dy = (1/tau) * (a - x + mf) | |
x = x + dt * dx | |
y = y + dt * dy | |
return x, y | |
def run_np(x, y): | |
for t in range(nt//inner_size): | |
x, y = run_np_inner(x, y) | |
return x, y | |
@tf.function | |
def run_tf_inner(x, y): | |
for t in range(inner_size): | |
mf = tf.reduce_mean(x, axis=0) | |
dx = tau * (x - x**3/3 + y) | |
dy = (1/tau) * (a - x + mf) | |
x = x + dt * dx | |
y = y + dt * dy | |
return x, y | |
def run_tf(x, y): | |
for t in range(nt//inner_size): | |
x, y = run_tf_inner(x, y) | |
return x, y | |
# numpy | |
x, y = np.zeros((2, nn, nr), 'f') | |
tic = time.time() | |
run_np(x, y) | |
toc_np = time.time() - tic | |
# tf | |
x, y = tf.zeros((2, nn, nr), tf.float32) | |
tic = time.time() | |
run_tf(x, y) | |
toc_tf = time.time() - tic | |
return toc_tf / toc_np | |
nr = 1024 | |
ni = 20 | |
print("%d %d %0.3f" % (ni, nr, bench(nr, ni))) | |
# 10885H/RTX4000 on "better battery" | |
# GPU nr=1024 ni=20 GPU 0.07 CPU 0.18 | |
# GPU nr=64 ni=20 GPU 0.81 CPU 0.56 | |
# GPU nr=32 ni=20 GPU 1.12 CPU 0.87 | |
# GPU nr= 8 ni=20 GPU 2.38 CPU 1.53 | |
# GPU nr= 1 ni=20 GPU 4.32 CPU 2.57 | |
# GPU nr= 1 ni=10 GPU CPU 1.77 | |
# GPU nr= 1 ni=13 GPU 3.99 CPU |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment