Created
March 11, 2020 08:11
-
-
Save maedoc/feccf8b397c03947aa4c154c3b166ef8 to your computer and use it in GitHub Desktop.
Simple autograd odeint model
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import time | |
from autograd import numpy as np, grad | |
from autograd.scipy.integrate import odeint | |
from autograd.builtins import tuple | |
from autograd.scipy.stats import norm | |
from autograd.misc.optimizers import adam | |
def vdpo(y, t0, a, k, tau=3.0): | |
x, y = np.reshape(y, (2, -1)) | |
return np.hstack([ | |
tau * (x - x**3/3 + y), | |
(1.0/tau) * (a - x + k*np.mean(x)) | |
]) | |
def ode(p, t=np.r_[:3.0:10j]): | |
return odeint(vdpo, p['ic'], t, tuple((p['a'], p['k'])), rtol=0.001, atol=0.01) | |
def loss(p, true_y, gain): | |
l2_ic = norm.logpdf(p['ic'], 0.0, 2.0).sum() | |
l2_a = norm.logpdf(p['a'], 1.0, 1.0).sum() | |
l2_y = norm.logpdf(true_y, np.dot(ode(p), gain.T), 1.0).sum() | |
return -(l2_ic + l2_a + l2_y) | |
# set up test data | |
n = 128 | |
true_p = { | |
'k': 0.1, | |
'a': np.random.randn(n), | |
'ic': np.random.randn(2*n) | |
} | |
gain = np.random.randn(64, 256) | |
true_y = np.dot(ode(true_p), gain.T) | |
# test how long gradient takes | |
tic = time.time() | |
gloss = grad(loss) | |
gloss(true_p, true_y, gain) | |
toc = time.time() | |
print('gradient took', toc - tic, 's') | |
# try optimizing | |
opt_p = { | |
'k': 0.2, | |
'a': np.ones((n, )), | |
'ic': np.ones((2*n, )), | |
} | |
def cb(x, i, g): | |
if i % 10 == 0: | |
print('iter', i, 'lp', -loss(x, true_y, gain)) | |
for step_size in (0.2, 0.02): | |
print('step', step_size) | |
opt_p = adam( | |
lambda x, i: gloss(x, true_y, gain), | |
opt_p, callback=cb, step_size=step_size) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment