Last active
August 3, 2021 15:52
-
-
Save mages/2dafa497de4753281e19 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Markus Gesmann | |
library(arm) # for 'display' function only | |
icecream <- data.frame( | |
# http://www.statcrunch.com/5.0/viewreport.php?reportid=34965&groupid=1848 | |
temp=c(11.9, 14.2, 15.2, 16.4, 17.2, 18.1, | |
18.5, 19.4, 22.1, 22.6, 23.4, 25.1), | |
units=c(185L, 215L, 332L, 325L, 408L, 421L, | |
406L, 412L, 522L, 445L, 544L, 614L) | |
) | |
basicPlot <- function(...){ | |
plot(units ~ temp, data=icecream, bty="n", lwd=2, | |
main="Number of ice creams sold", col="#00526D", | |
xlab="Temperature (Celsius)", | |
ylab="Units sold", ...) | |
axis(side = 1, col="grey") | |
axis(side = 2, col="grey") | |
} | |
basicPlot() | |
## ------------------------------------------------------------------------ | |
basicPlot() | |
lsq.mod <- lsfit(icecream$temp, icecream$units) | |
abline(lsq.mod, col="orange", lwd=2) | |
legend(x="topleft", bty="n", lwd=c(2,2), lty=c(NA,1), | |
legend=c("observation", "linear least square"), | |
col=c("#00526D","orange"), pch=c(1,NA)) | |
## ------------------------------------------------------------------------ | |
lin.mod <- glm(units ~ temp, data=icecream, | |
family=gaussian(link="identity")) | |
display(lin.mod) | |
## ------------------------------------------------------------------------ | |
log.lin.mod <- glm(log(units) ~ temp, data=icecream, | |
family=gaussian(link="identity")) | |
display(log.lin.mod) | |
log.lin.sig <- summary(log.lin.mod)$dispersion | |
log.lin.pred <- exp(predict(log.lin.mod) + 0.5 * log.lin.sig) | |
basicPlot() | |
lines(icecream$temp, log.lin.pred, col="red", lwd=2) | |
legend(x="topleft", bty="n", lwd=c(2,2), lty=c(NA,1), | |
legend=c("observation", "log-transformed LM"), | |
col=c("#00526D","red"), pch=c(1,NA)) | |
## ------------------------------------------------------------------------ | |
exp(coef(log.lin.mod)[1]+ 0.5 * log.lin.sig) | |
## ------------------------------------------------------------------------ | |
pois.mod <- glm(units ~ temp, data=icecream, | |
family=poisson(link="log")) | |
display(pois.mod) | |
pois.pred <- predict(pois.mod, type="response") | |
basicPlot() | |
lines(icecream$temp, pois.pred, col="blue", lwd=2) | |
legend(x="topleft", bty="n", lwd=c(2,2), lty=c(NA,1), | |
legend=c("observation", "Poisson (log) GLM"), | |
col=c("#00526D","blue"), pch=c(1,NA)) | |
## ------------------------------------------------------------------------ | |
predict(pois.mod, newdata=data.frame(temp=32), type="response") | |
## ------------------------------------------------------------------------ | |
market.size <- 800 | |
icecream$opportunity <- market.size - icecream$units | |
bin.glm <- glm(cbind(units, opportunity) ~ temp, data=icecream, | |
family=binomial(link = "logit")) | |
display(bin.glm) | |
bin.pred <- predict(bin.glm, type="response")*market.size | |
basicPlot() | |
lines(icecream$temp, bin.pred, col="purple", lwd=2) | |
legend(x="topleft", bty="n", lwd=c(2,2), lty=c(NA,1), | |
legend=c("observation", "Binomial (logit) GLM"), | |
col=c("#00526D","purple"), pch=c(1,NA)) | |
## ------------------------------------------------------------------------ | |
# Sales at 0 Celsius | |
plogis(coef(bin.glm)[1])*market.size | |
# Sales at 35 Celsius | |
plogis(coef(bin.glm)[1] + coef(bin.glm)[2]*35)*market.size | |
## ------------------------------------------------------------------------ | |
temp <- 0:35 | |
p.lm <- predict(lin.mod, data.frame(temp=temp), type="response") | |
p.log.lm <- exp(predict(log.lin.mod, data.frame(temp=0:35), type="response") + | |
0.5 * summary(log.lin.mod)$dispersion) | |
p.pois <- predict(pois.mod, data.frame(temp=temp), type="response") | |
p.bin <- predict(bin.glm, data.frame(temp=temp), type="response")*market.size | |
basicPlot(xlim=range(temp), ylim=c(-20,market.size)) | |
lines(temp, p.lm, type="l", col="orange", lwd=2) | |
lines(temp, p.log.lm, type="l", col="red", lwd=2) | |
lines(temp, p.pois, type="l", col="blue", lwd=2) | |
lines(temp, p.bin, type="l", col="purple", lwd=2) | |
legend(x="topleft", | |
legend=c("observation", | |
"linear model", | |
"log-transformed LM", | |
"Poisson (log) GLM", | |
"Binomial (logit) GLM"), | |
col=c("#00526D","orange", "red", | |
"blue", "purple"), | |
bty="n", lwd=rep(2,5), | |
lty=c(NA,rep(1,4)), | |
pch=c(1,rep(NA,4))) | |
## ----Simulations--------------------------------------------------------- | |
n <- nrow(icecream) | |
A <- model.matrix(units ~ temp, data=icecream) | |
set.seed(1234) | |
(rand.normal <- rnorm(n, | |
mean = A %*% coef(lin.mod), | |
sd = sqrt(summary(lin.mod)$dispersion))) | |
(rand.logtrans <- rlnorm(n, | |
meanlog = A %*% coef(log.lin.mod), | |
sdlog = sqrt(summary(log.lin.mod)$dispersion))) | |
(rand.pois <- rpois(n, | |
lambda = exp(A %*% coef(pois.mod)))) | |
(rand.bin <- rbinom(n, | |
size = market.size, | |
prob = plogis(A %*% coef(bin.glm)))) | |
basicPlot(ylim=c(100,700)) | |
cols <- adjustcolor(c("orange", "red", "blue", "purple"), | |
alpha.f = 0.75) | |
points(icecream$temp, rand.normal, pch=19, col=cols[1]) | |
points(icecream$temp, rand.logtrans, pch=19, col=cols[2]) | |
points(icecream$temp, rand.pois, pch=19, col=cols[3]) | |
points(icecream$temp, rand.bin, pch=19, col=cols[4]) | |
legend(x="topleft", | |
legend=c("observation", | |
"linear model", | |
"log-transformed LM", | |
"Poisson (log) GLM", | |
"Binomial (logit) GLM"), | |
col=c("#00526D",cols), | |
lty=NA, | |
bty="n", lwd=rep(2,5), | |
pch=c(1,rep(19,4))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment