Last active
October 22, 2017 17:57
-
-
Save magixer/cd51082f32b4d3505e64275afc287151 to your computer and use it in GitHub Desktop.
Rating accuracy of 6 different classifiers
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.datasets import load_wine | |
from sklearn.model_selection import train_test_split | |
from sklearn.metrics import accuracy_score | |
#Classifiers | |
from sklearn.naive_bayes import GaussianNB | |
from sklearn.neighbors import KNeighborsClassifier | |
from sklearn.svm import SVC | |
from sklearn.gaussian_process import GaussianProcessClassifier | |
from sklearn.tree import DecisionTreeClassifier | |
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis | |
# Preparing Data | |
d = load_wine() | |
f = d['data'] | |
l = d['target'] | |
# Splitting Data | |
train_f, test_f, train_l, test_l = train_test_split(f,l, test_size=0.5, random_state=0) | |
# Classifiers | |
c1 = GaussianNB().fit(train_f,train_l) | |
c2 = DecisionTreeClassifier().fit(train_f, train_l) | |
c3 = KNeighborsClassifier().fit(train_f, train_l) | |
c4 = SVC().fit(train_f, train_l) | |
c5 = GaussianProcessClassifier().fit(train_f,train_l) | |
c6 = QuadraticDiscriminantAnalysis().fit(train_f,train_l) | |
# Predictions | |
p1 = c1.predict(test_f) | |
p2 = c2.predict(test_f) | |
p3 = c3.predict(test_f) | |
p4 = c4.predict(test_f) | |
p5 = c5.predict(test_f) | |
p6 = c6.predict(test_f) | |
# Accuracies | |
print ("GaussianNB " + str(accuracy_score(p1,test_l))) | |
print ("DecisionTreeClassifier " + str(accuracy_score(p2,test_l))) | |
print ("KNeighboursClassifier " + str(accuracy_score(p3,test_l))) | |
print ("SVC " + str(accuracy_score(p4,test_l))) | |
print ("GaussianProcessClassifier " + str(accuracy_score(p5,test_l))) | |
print ("QuadraticDiscriminantAnalysis " + str(accuracy_score(p6,test_l))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment