https://cloud.google.com/ml-engine/docs/concepts/training-overview
Even though the exact specifications of the machine types are subject to change at any time, you can compare them in terms of relative capability. The following table uses rough "t-shirt" sizing to describe the machine types.
ココらへんがいまいち曖昧なので調べてみた
trainer/task.py
import os
mem_bytes = os.sysconf('SC_PAGE_SIZE') * os.sysconf('SC_PHYS_PAGES') # e.g. 4015976448
mem_gib = mem_bytes/(1024.**3) # e.g. 3.74
print(str(mem_gib)+"GB")
meminfo = dict((i.split()[0].rstrip(':'),int(i.split()[1])) for i in open('/proc/meminfo').readlines())
mem_kib = meminfo['MemTotal'] # e.g. 3921852
print(str(mem_kib)+"KB")
exit()
gcloud ml-engine jobs submit training $JOB_NAME
--job-dir $OUTPUT_PATH
--runtime-version 1.2
--module-name trainer.task
--package-path trainer/
--region $REGION
--scale-tier STANDARD_1
--
--train-files $TRAIN_DATA
--eval-files $EVAL_DATA
--train-steps 1000
--verbosity DEBUG
- 14.6924285889GB
- 15,406,128KB
gcloud ml-engine jobs submit training $JOB_NAME
--job-dir $OUTPUT_PATH
--runtime-version 1.2
--module-name trainer.task
--package-path trainer/
--region $REGION
--scale-tier STANDARD_1
--
--train-files $TRAIN_DATA
--eval-files $EVAL_DATA
--train-steps 1000
--verbosity DEBUG
- 7.01322555542GB
- 7,353,900KB