Created
September 28, 2022 23:24
-
-
Save malfet/99a7b09d7bfd24a7c5fb35a1f6c78ef8 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Very restricted unpickler | |
# Based of https://github.com/python/cpython/blob/main/Lib/pickle.py | |
# Expected to be useful for loading PyTorch model weights | |
# For example: | |
# data = urllib.request.urlopen('https://download.pytorch.org/models/resnet50-0676ba61.pth').read() | |
# buf = io.BytesIO(data) | |
# weights = torch.load(buf, pickle_module=WeightsUnpickler) | |
import sys | |
from sys import maxsize | |
from struct import pack, unpack | |
from collections import OrderedDict | |
import torch | |
from pickle import (UnpicklingError, bytes_types, | |
STOP, PROTO, | |
MARK, | |
# Risky ops: class resolution, state modification, function invokation | |
GLOBAL, BUILD, REDUCE, NEWOBJ, | |
# Construct tirivial objects | |
NONE, NEWTRUE, NEWFALSE, EMPTY_DICT, EMPTY_LIST, EMPTY_TUPLE, EMPTY_SET, | |
BININT, BININT1, BININT2, BINPERSID, BINUNICODE, | |
BINGET, LONG_BINGET, BINPUT, LONG_BINPUT, SETITEM, SETITEMS, TUPLE, TUPLE1, TUPLE2, TUPLE3, ADDITEMS) | |
# Unpickling machinery | |
class Unpickler: | |
def __init__(self, file, *, encoding: str = "UNUSED"): | |
self.readline = file.readline | |
self.read = file.read | |
self.memo = {} | |
def load(self): | |
"""Read a pickled object representation from the open file. | |
Return the reconstituted object hierarchy specified in the file. | |
""" | |
self.metastack = [] | |
self.stack = [] | |
self.append = self.stack.append | |
read = self.read | |
readline = self.readline | |
while True: | |
key = read(1) | |
if not key: | |
raise EOFError | |
assert isinstance(key, bytes_types) | |
if key[0] == STOP[0]: | |
rc=self.stack.pop() | |
#print(f"Returining {rc}") | |
return rc | |
elif key[0] == PROTO[0]: | |
# Read and ignore proto version | |
read(1)[0] | |
pass | |
elif key[0] == NONE[0]: | |
self.append(None) | |
elif key[0] == GLOBAL[0]: | |
module = readline()[:-1].decode("utf-8") | |
name = readline()[:-1].decode("utf-8") | |
full_path = f"{module}.{name}" | |
ALLOWED_GLOBALS = { | |
"collections.OrderedDict": OrderedDict, | |
"torch.FloatTensor": torch.FloatTensor, | |
"torch.FloatStorage": torch.FloatStorage, | |
"torch.LongTensor": torch.LongTensor, | |
"torch.LongStorage": torch.FloatStorage, | |
"torch.nn.parameter.Parameter": torch.nn.Parameter, | |
"torch._utils._rebuild_parameter": torch._utils._rebuild_parameter, | |
"torch._utils._rebuild_tensor_v2": torch._utils._rebuild_tensor_v2, | |
} | |
if full_path in ALLOWED_GLOBALS: | |
self.append(ALLOWED_GLOBALS[full_path]) | |
else: | |
raise RuntimeError(f"Unsupported class {full_path}") | |
elif key[0] == NEWOBJ[0]: | |
args = self.stack.pop() | |
cls = self.stack.pop() | |
if cls != torch.nn.Parameter: | |
raise RuntimeError("Trying to instantiate unsupported class") | |
self.append(cls.__new__(cls, *args)) | |
elif key[0] == REDUCE[0]: | |
args = self.stack.pop() | |
func = self.stack[-1] | |
self.stack[-1] = func(*args) | |
elif key[0] == BUILD[0]: | |
state = self.stack.pop() | |
inst = self.stack[-1] | |
if type(inst) == torch.nn.Parameter: | |
inst.__setstate__(state) | |
elif type(inst) == OrderedDict: | |
inst.__dict__.update(state) | |
else: | |
raise RuntimeError("Can only build parameter and dict objects") | |
elif key[0] == NEWFALSE[0]: | |
self.append(False) | |
elif key[0] == NEWTRUE[0]: | |
self.append(True) | |
elif key[0] == EMPTY_TUPLE[0]: | |
self.append(()) | |
elif key[0] == EMPTY_LIST[0]: | |
self.append([]) | |
elif key[0] == EMPTY_DICT[0]: | |
self.append({}) | |
elif key[0] == EMPTY_SET[0]: | |
self.append(set()) | |
elif key[0] == BININT[0]: | |
self.append(unpack('<i', read(4))[0]) | |
elif key[0] == BININT1[0]: | |
self.append(self.read(1)[0]) | |
elif key[0] == BININT2[0]: | |
self.append(unpack('<H', read(2))[0]) | |
elif key[0] == BINUNICODE[0]: | |
strlen = unpack('<I', read(4))[0] | |
if strlen > maxsize: | |
raise RuntimeError("String is too long") | |
strval = str(read(strlen), 'utf-8', 'surrogatepass') | |
self.append(strval) | |
elif key[0] == BINPERSID[0]: | |
pid = self.stack.pop() | |
self.append(self.persistent_load(pid)) | |
elif key[0] in [BINGET[0], LONG_BINGET[0]]: | |
idx = (read(1) if key[0] == BINGET[0] else unpack('<I', read(4)))[0] | |
self.append(self.memo[idx]) | |
elif key[0] in [BINPUT[0], LONG_BINPUT[0]]: | |
i = (read(1) if key[0] == BINPUT[0] else unpack('<I', read(4)))[0] | |
if i < 0: | |
raise ValueError("negative argument") | |
self.memo[i] = self.stack[-1] | |
elif key[0] == SETITEM[0]: | |
(v, k) = (self.stack.pop(), self.stack.pop()) | |
self.stack[-1][k] = v | |
elif key[0] == SETITEMS[0]: | |
items = self.pop_mark() | |
for i in range(0, len(items), 2): | |
self.stack[-1][items[i]] = items[i + 1] | |
elif key[0] == MARK[0]: | |
self.metastack.append(self.stack) | |
self.stack = [] | |
self.append = self.stack.append | |
elif key[0] == TUPLE[0]: | |
items = self.pop_mark() | |
self.append(tuple(items)) | |
elif key[0] == TUPLE1[0]: | |
self.stack[-1] = (self.stack[-1],) | |
elif key[0] == TUPLE2[0]: | |
self.stack[-2:] = [(self.stack[-2], self.stack[-1])] | |
elif key[0] == TUPLE3[0]: | |
self.stack[-3:] = [(self.stack[-3], self.stack[-2], self.stack[-1])] | |
else: | |
raise RuntimeError(f"Unsupported operatnd {key[0]}") | |
# Return a list of items pushed in the stack after last MARK instruction. | |
def pop_mark(self): | |
items = self.stack | |
self.stack = self.metastack.pop() | |
self.append = self.stack.append | |
return items | |
def persistent_load(self, pid): | |
raise UnpicklingError("unsupported persistent id encountered") | |
def load(file, *, encoding:str = "UNUSED"): | |
return Unpickler(file).load() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment