Last active
March 8, 2025 13:11
-
-
Save malustewart/d5d0d1eebe826bc903906eaba3d54d39 to your computer and use it in GitHub Desktop.
lotka-volterra runge-kutta 4
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using Plots | |
using ArgParse | |
default_alpha = 0.66666 | |
default_beta = 1.33333 | |
default_gamma = 1 | |
default_delta = 1 | |
default_r0 = 3.0 | |
default_f0 = 1.5 | |
default_steps = 1000 | |
default_last_t = 25 | |
default_r0 = 1.0 | |
default_f0 = 1.0 | |
function parse_commandline() | |
s = ArgParseSettings() | |
@add_arg_table s begin | |
"--alpha", "-a" | |
help = "alpha" | |
arg_type = Float64 | |
default = default_alpha | |
"--beta", "-b" | |
help = "beta" | |
arg_type = Float64 | |
default = default_beta | |
"--gamma", "-c" | |
help = "gamma" | |
arg_type = Float64 | |
default = default_gamma | |
"--delta", "-d" | |
help = "delta" | |
arg_type = Float64 | |
default = default_delta | |
"--steps", "-s" | |
help = "Number of steps to run" | |
arg_type = Int | |
default = default_steps | |
"-t" | |
help = "End time" | |
arg_type = Float64 | |
default = default_last_t | |
"-r" | |
help = "Rabbit initial population" | |
arg_type = Float64 | |
default = default_r0 | |
"-f" | |
help = "Fox initial population" | |
arg_type = Float64 | |
default = default_f0 | |
end | |
return parse_args(s) | |
end | |
parsed_args = parse_commandline() | |
alpha = parsed_args["alpha"] | |
beta = parsed_args["beta"] | |
gamma = parsed_args["gamma"] | |
delta = parsed_args["delta"] | |
r0 =parsed_args["r"] | |
f0 = parsed_args["f"] | |
steps = parsed_args["steps"] | |
last_t = parsed_args["t"] | |
h = last_t / steps | |
function lotka_volterra(tk, yk) | |
[(alpha - beta*yk[2])*yk[1], (gamma * yk[1] - delta)*yk[2]] | |
end | |
function rk4(yk, tk, h, f) | |
q1 = f(tk, yk) | |
q2 = f(tk + h/2, yk + h/2*q1) | |
q3 = f(tk + h/2, yk + h/2*q2) | |
q4 = f(tk + h, yk + h*q3) | |
yk + h * (q1 + 2*q2 + 2*q3 + q4) / 6 | |
end | |
t = range(0, convert(Int, last_t), length=steps) | |
Y = zeros(Float64, steps + 1, 2) | |
Y[1,:] = [r0,f0] | |
for (k, tk) in enumerate(t) | |
Y[k+1, :] = rk4(Y[k, :], tk, h, lotka_volterra) | |
end | |
p = plot!(Y[1:steps,1], Y[1:steps,2], layout=(1,2), subplot=1, xlabel="rabbits", ylabel="foxes") | |
p = plot!(t, [Y[1:steps,1] Y[1:steps, 2]], label=["rabbit" "foxes"],subplot=2, xlabel="time") | |
gui() | |
println("Press the enter key to quit:") | |
readline() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment