Created
June 7, 2017 23:06
-
-
Save malzantot/02f6fb01c2de93977f8c64f6d1aba605 to your computer and use it in GitHub Desktop.
Solution of the FrozenLake problem using Genetic Algorithm
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import random | |
import time | |
import gym | |
from gym import wrappers | |
def run_episode(env, policy, episode_len=100): | |
total_reward = 0 | |
obs = env.reset() | |
for t in range(episode_len): | |
# env.render() | |
action = policy[obs] | |
obs, reward, done, _ = env.step(action) | |
total_reward += reward | |
if done: | |
# print('Epside finished after {} timesteps.'.format(t+1)) | |
break | |
return total_reward | |
def evaluate_policy(env, policy, n_episodes=100): | |
total_rewards = 0.0 | |
for _ in range(n_episodes): | |
total_rewards += run_episode(env, policy) | |
return total_rewards / n_episodes | |
def gen_random_policy(): | |
return np.random.choice(4, size=((16))) | |
def crossover(policy1, policy2): | |
new_policy = policy1.copy() | |
for i in range(16): | |
rand = np.random.uniform() | |
if rand > 0.5: | |
new_policy[i] = policy2[i] | |
return new_policy | |
def mutation(policy, p=0.05): | |
new_policy = policy.copy() | |
for i in range(16): | |
rand = np.random.uniform() | |
if rand < p: | |
new_policy[i] = np.random.choice(4) | |
return new_policy | |
if __name__ == '__main__': | |
random.seed(1234) | |
np.random.seed(1234) | |
env = gym.make('FrozenLake-v0') | |
env.seed(0) | |
# env = wrappers.Monitor(env, '/tmp/frozenlake1', force=True) | |
## Policy search | |
n_policy = 100 | |
n_steps = 20 | |
start = time.time() | |
policy_pop = [gen_random_policy() for _ in range(n_policy)] | |
for idx in range(n_steps): | |
policy_scores = [evaluate_policy(env, p) for p in policy_pop] | |
print('Generation %d : max score = %0.2f' %(idx+1, max(policy_scores))) | |
policy_ranks = list(reversed(np.argsort(policy_scores))) | |
elite_set = [policy_pop[x] for x in policy_ranks[:5]] | |
select_probs = np.array(policy_scores) / np.sum(policy_scores) | |
child_set = [crossover( | |
policy_pop[np.random.choice(range(n_policy), p=select_probs)], | |
policy_pop[np.random.choice(range(n_policy), p=select_probs)]) | |
for _ in range(n_policy - 5)] | |
mutated_list = [mutation(p) for p in child_set] | |
policy_pop = elite_set | |
policy_pop += mutated_list | |
policy_score = [evaluate_policy(env, p) for p in policy_pop] | |
best_policy = policy_pop[np.argmax(policy_score)] | |
end = time.time() | |
print('Best policy score = %0.2f. Time taken = %4.4f' | |
%(np.max(policy_score), (end-start))) | |
## Evaluation | |
env = wrappers.Monitor(env, '/tmp/frozenlake1', force=True) | |
for _ in range(200): | |
run_episode(env, best_policy) | |
env.close() | |
gym.upload('/tmp/frozenlake1', api_key=...) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment