Created
June 25, 2017 12:16
-
-
Save malzantot/3d2fbe8e7c2d8c2cf7a5911beb4da59c to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Q-Learning example using OpenAI gym MountainCar enviornment | |
Author: Moustafa Alzantot ([email protected]) | |
""" | |
import numpy as np | |
import gym | |
from gym import wrappers | |
n_states = 50 | |
eta = 0.03 # Learning rate | |
gamma = 0.95 | |
learning_iters = 600000 | |
def run_episode(env, policy=None, render=False): | |
obs = env.reset() | |
total_reward = 0 | |
for _ in range(10000): | |
if render: | |
env.render() | |
if policy is None: | |
action = env.action_space.sample() | |
else: | |
a,b = obs_to_state(env, obs) | |
action = policy[a][b] | |
obs, reward, done, _ = env.step(action) | |
total_reward += reward | |
if done: | |
break | |
return total_reward | |
def obs_to_state(env, obs): | |
""" Maps an observation to state """ | |
env_low = env.observation_space.low | |
env_high = env.observation_space.high | |
env_dx = (env_high - env_low) / n_states | |
a = int((obs[0] - env_low[0])/env_dx[0]) | |
b = int((obs[1] - env_low[1])/env_dx[1]) | |
return a, b | |
def get_random_policy(env): | |
""" returns a random policy """ | |
return np.random.choice(env.action_space.n, size=(n_states, n_states)) | |
if __name__ == '__main__': | |
env_name = 'MountainCar-v0' | |
env = gym.make(env_name) | |
print ('----- using Q Learning -----') | |
q_table = np.zeros((n_states, n_states, 3)) | |
for i in range(learning_iters): | |
obs = env.reset() | |
total_reward = 0 | |
for j in range(10000): | |
a, b = obs_to_state(env, obs) | |
action = np.argmax(q_table[a][b]) | |
obs, reward, done, _ = env.step(action) | |
total_reward += reward | |
# update q table | |
a_, b_ = obs_to_state(env, obs) | |
q_table[a][b][action] = q_table[a][b][action] + eta * (reward + gamma * np.max(q_table[a_][b_]) - q_table[a][b][action]) | |
if done: | |
break | |
if i % 100 == 0: | |
print(i, ' - ', total_reward) | |
policy = np.argmax(q_table, axis=2) | |
eval_score = run_episode(env, policy, True) | |
print("Evaluation score = ", eval_score) | |
# exit(0) | |
monitor_path = '/tmp/mountaincar_exp' | |
env = wrappers.Monitor(env, monitor_path, force=True) | |
for _ in range(2000): | |
run_episode(env, policy) | |
env.close() | |
gym.upload(monitor_path, api_key=...) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment