Last active
October 18, 2021 21:10
-
-
Save malzantot/b5bc46acaa55ae6d1d610f83eb0a6cb0 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import gym | |
import numpy as np | |
def gen_random_policy(): | |
return (np.random.uniform(-1,1, size=4), np.random.uniform(-1,1)) | |
def policy_to_action(env, policy, obs): | |
if np.dot(policy[0], obs) + policy[1] > 0: | |
return 1 | |
else: | |
return 0 | |
def run_episode(env, policy, t_max=1000, render=False): | |
obs = env.reset() | |
total_reward = 0 | |
for i in range(t_max): | |
if render: | |
env.render() | |
selected_action = policy_to_action(env, policy, obs) | |
obs, reward, done, _ = env.step(selected_action) | |
total_reward += reward | |
if done: | |
break | |
return total_reward | |
if __name__ == '__main__': | |
env = gym.make('CartPole-v0') | |
## Generate a pool or random policies | |
n_policy = 500 | |
policy_list = [gen_random_policy() for _ in range(n_policy)] | |
# Evaluate the score of each policy. | |
scores_list = [run_episode(env, p) for p in policy_list] | |
# Select the best plicy. | |
print('Best policy score = %f' %max(scores_list)) | |
best_policy= policy_list[np.argmax(scores_list)] | |
print('Running with best policy:\n') | |
run_episode(env, best_policy, render=True) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment