Last active
September 18, 2017 14:31
-
-
Save manashmandal/4316d4fb9a2a76f621d4a47bae39cb0f to your computer and use it in GitHub Desktop.
Softmax using tf.gradients
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
# Import MNIST data | |
from tensorflow.examples.tutorials.mnist import input_data | |
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) | |
# Parameters | |
learning_rate = 0.01 | |
training_epochs = 10 | |
batch_size = 100 | |
display_step = 1 | |
# Parameters | |
learning_rate = 0.01 | |
training_epochs = 10 | |
batch_size = 100 | |
display_step = 1 | |
# tf Graph Input | |
x = tf.placeholder(tf.float32, [None, 784]) # mnist data image of shape 28*28=784 | |
y = tf.placeholder(tf.float32, [None, 10]) # 0-9 digits recognition => 10 classes | |
# Set model weights | |
W = tf.Variable(tf.zeros([784, 10])) | |
b = tf.Variable(tf.zeros([10])) | |
# Construct model | |
pred = tf.nn.softmax(tf.matmul(x, W) + b) # Softmax | |
# Minimize error using cross entropy | |
cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred), reduction_indices=1)) | |
grad_W, grad_b = tf.gradients(xs=[W, b], ys=cost) | |
new_W = W.assign(W - learning_rate * grad_W) | |
new_b = b.assign(b - learning_rate * grad_b) | |
# Initialize the variables (i.e. assign their default value) | |
init = tf.global_variables_initializer() | |
# Start training | |
with tf.Session() as sess: | |
sess.run(init) | |
# Training cycle | |
for epoch in range(training_epochs): | |
avg_cost = 0. | |
total_batch = int(mnist.train.num_examples/batch_size) | |
# Loop over all batches | |
for i in range(total_batch): | |
batch_xs, batch_ys = mnist.train.next_batch(batch_size) | |
# Fit training using batch data | |
_, _, c = sess.run([new_W, new_b ,cost], feed_dict={x: batch_xs, | |
y: batch_ys}) | |
# Compute average loss | |
avg_cost += c / total_batch | |
# Display logs per epoch step | |
if (epoch+1) % display_step == 0: | |
# print(sess.run(W)) | |
print ("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost)) | |
print ("Optimization Finished!") | |
# Test model | |
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) | |
# Calculate accuracy for 3000 examples | |
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) | |
print ("Accuracy:", accuracy.eval({x: mnist.test.images[:3000], y: mnist.test.labels[:3000]})) | |
# Output | |
# Epoch: 0001 cost= 1.183741399 | |
# Epoch: 0002 cost= 0.665312284 | |
# Epoch: 0003 cost= 0.552796521 | |
# Epoch: 0004 cost= 0.498697014 | |
# Epoch: 0005 cost= 0.465521633 | |
# Epoch: 0006 cost= 0.442611256 | |
# Epoch: 0007 cost= 0.425528946 | |
# Epoch: 0008 cost= 0.412203073 | |
# Epoch: 0009 cost= 0.401364554 | |
# Epoch: 0010 cost= 0.392398663 | |
# Optimization Finished! | |
# Accuracy: 0.874 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment