Skip to content

Instantly share code, notes, and snippets.

@manmohan24nov
Created October 19, 2020 08:06
Show Gist options
  • Save manmohan24nov/995ca68c04a0053a72d1179e563e0cb7 to your computer and use it in GitHub Desktop.
Save manmohan24nov/995ca68c04a0053a72d1179e563e0cb7 to your computer and use it in GitHub Desktop.
In [3]: weekly_sales_df = sales_data[['Store',
...: 'Date',
...: 'Weekly_Sales']].groupby(['Date',
...: 'Store']).agg({'Weekly_Sales':'sum'})
In [4]: weekly_sales_df.reset_index(inplace=True)
In [5]: weekly_sales_df['rank']=weekly_sales_df.groupby(['Store'])['Weekly_Sales'].rank(ascending=False)
...: weekly_sales_df['dense_rank'] = weekly_sales_df.groupby(['Store'])['Weekly_Sales'].rank(method='dense',
...: ascending=False)
In [6]: weekly_sales_df[weekly_sales_df['Store']==5].sort_values(by='rank')
Out[6]:
Date Store Weekly_Sales rank dense_rank
5269 25/11/2011 5 507900.07 1.0 1.0
5494 26/11/2010 5 488362.61 2.0 2.0
5044 24/12/2010 5 466010.25 3.0 3.0
4819 23/12/2011 5 458562.24 4.0 4.0
1129 06/04/2012 5 402985.70 5.0 5.0
... ... ... ... ... ...
4729 23/07/2010 5 274742.63 139.0 139.0
5359 26/03/2010 5 273282.97 140.0 140.0
5314 26/02/2010 5 270281.63 141.0 141.0
6214 30/07/2010 5 270281.63 141.0 141.0
2794 14/01/2011 5 260636.71 143.0 142.0
[143 rows x 5 columns]
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment