Last active
September 20, 2017 15:07
-
-
Save mannharleen/69342cba411b0109f0f281270ecef206 to your computer and use it in GitHub Desktop.
When case classes cannot be created in advance. e.g. schema is being read from a JSON file, we cannot use reflection method i.e. cannot use rdd.map(x=> case_class(x._1,x._2)).toDF()
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
//Programmatically Specifying the Schema | |
import org.apache.spark.{SparkContext,SparkConf} | |
import org.apache.spark.sql.hive.HiveContext | |
//initializations | |
val conf = new SparkConf().setAppName("xx").setMaster("local[2]") | |
val sc = new SparkContext(conf) | |
val hiveContext = new HiveContext(sc) | |
// | |
//create DF from RDD | |
import org.apache.spark.sql.Row | |
import org.apache.spark.sql.types.{StructType, StructField, IntegerType} | |
val schema = StructType( StructField("column", IntegerType, false) :: Nil) | |
//pyspark: | |
//from pyspark.sql.types import IntegerType,StructType,StructField | |
//qlContext.createDataFrame(rdd,StructType([StructField("col1",IntegerType(),False),StructField("col2",IntegerType(),False)])) | |
val df = hiveContext.createDataFrame(rdd.map(x=> Row(x)),schema) | |
df.show |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment