Created
April 22, 2018 09:04
-
-
Save manuel-delverme/a1b6b93bd5b4d607920b045b039fcb98 to your computer and use it in GitHub Desktop.
zero_training
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def train_network(samples, neural_network, nr_epochs=10, batch_size=64): | |
optimizer = optim.Adam(neural_network.parameters()) | |
neural_network.train() | |
for epoch_nr in range(nr_epochs): | |
sample_ids = np.random.shuffle(range(len(samples))) | |
for start in range(0, len(samples) // batch_size, batch_size): | |
mini_batch = samples[sample_ids[start: start + batch_size]] | |
boards, pis, vs = zip(*mini_batch) | |
boards = torch.FloatTensor(np.array(boards).astype(np.float64)) | |
target_pis = torch.FloatTensor(np.array(pis)) | |
target_vs = torch.FloatTensor(np.array(vs).astype(np.float64)) | |
boards, target_pis, target_vs = Variable(boards), Variable(target_pis), Variable(target_vs) | |
out_pi, out_v = neural_network(boards) | |
l_pi = loss_pi(target_pis, out_pi) | |
l_v = loss_v(target_vs, out_v) | |
total_loss = l_pi + l_v | |
optimizer.zero_grad() | |
total_loss.backward() | |
optimizer.step() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment