Last active
September 14, 2024 07:40
-
-
Save maple3142/27af0ac0d6a5e1c0b69f6454e37e3999 to your computer and use it in GitHub Desktop.
https://ed25519.cr.yp.to/python/ed25519.py ported to Python 3
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import hashlib | |
try: | |
import gmpy2 | |
HAS_GMPY2 = True | |
except ImportError: | |
HAS_GMPY2 = False | |
b = 256 | |
q = 2**255 - 19 | |
l = 2**252 + 27742317777372353535851937790883648493 | |
expmod = pow | |
if HAS_GMPY2: | |
expmod = gmpy2.powmod | |
def H(m): | |
return hashlib.sha512(m).digest() | |
def inv(x): | |
return expmod(x, -1, q) | |
d = -121665 * inv(121666) | |
I = expmod(2, (q - 1) // 4, q) | |
def xrecover(y): | |
xx = (y * y - 1) * inv(d * y * y + 1) | |
x = expmod(xx, (q + 3) // 8, q) | |
if (x * x - xx) % q != 0: | |
x = (x * I) % q | |
if x % 2 != 0: | |
x = q - x | |
return x | |
By = 4 * inv(5) | |
Bx = xrecover(By) | |
B = [Bx % q, By % q] | |
def edwards(P, Q): | |
x1 = P[0] | |
y1 = P[1] | |
x2 = Q[0] | |
y2 = Q[1] | |
x3 = (x1 * y2 + x2 * y1) * inv(1 + d * x1 * x2 * y1 * y2) | |
y3 = (y1 * y2 + x1 * x2) * inv(1 - d * x1 * x2 * y1 * y2) | |
return [x3 % q, y3 % q] | |
def scalarmult(P, e): | |
if e == 0: | |
return [0, 1] | |
Q = scalarmult(P, e // 2) | |
Q = edwards(Q, Q) | |
if e & 1: | |
Q = edwards(Q, P) | |
return Q | |
def encodeint(y): | |
bits = [(y >> i) & 1 for i in range(b)] | |
return bytes([sum([bits[i * 8 + j] << j for j in range(8)]) for i in range(b // 8)]) | |
def encodepoint(P): | |
x = P[0] | |
y = P[1] | |
bits = [(y >> i) & 1 for i in range(b - 1)] + [x & 1] | |
return bytes([sum([bits[i * 8 + j] << j for j in range(8)]) for i in range(b // 8)]) | |
def bit(h, i): | |
return (h[i // 8] >> (i % 8)) & 1 | |
def publickey(sk): | |
h = H(sk) | |
a = 2 ** (b - 2) + sum(2**i * bit(h, i) for i in range(3, b - 2)) | |
A = scalarmult(B, a) | |
return encodepoint(A) | |
def Hint(m): | |
h = H(m) | |
return sum(2**i * bit(h, i) for i in range(2 * b)) | |
def signature(m, sk, pk): | |
h = H(sk) | |
a = 2 ** (b - 2) + sum(2**i * bit(h, i) for i in range(3, b - 2)) | |
r = Hint(h[b // 8 : b // 4] + m) | |
R = scalarmult(B, r) | |
S = (r + Hint(encodepoint(R) + pk + m) * a) % l | |
return encodepoint(R) + encodeint(S) | |
def isoncurve(P): | |
x = P[0] | |
y = P[1] | |
return (-x * x + y * y - 1 - d * x * x * y * y) % q == 0 | |
def decodeint(s): | |
return sum(2**i * bit(s, i) for i in range(0, b)) | |
def decodepoint(s): | |
y = sum(2**i * bit(s, i) for i in range(0, b - 1)) | |
x = xrecover(y) | |
if x & 1 != bit(s, b - 1): | |
x = q - x | |
P = [x, y] | |
if not isoncurve(P): | |
raise Exception("decoding point that is not on curve") | |
return P | |
def checkvalid(s, m, pk): | |
if len(s) != b // 4: | |
raise Exception("signature length is wrong") | |
if len(pk) != b // 8: | |
raise Exception("public-key length is wrong") | |
R = decodepoint(s[0 : b // 8]) | |
A = decodepoint(pk) | |
S = decodeint(s[b // 8 : b // 4]) | |
h = Hint(encodepoint(R) + pk + m) | |
if scalarmult(B, S) != edwards(R, scalarmult(A, h)): | |
raise Exception("signature does not pass verification") | |
if __name__ == "__main__": | |
from cryptography.hazmat.primitives.asymmetric.ed25519 import Ed25519PrivateKey | |
sk = Ed25519PrivateKey.generate() | |
pk = sk.public_key() | |
sk_raw = sk.private_bytes_raw() | |
for i in range(10): | |
msg = f"peko{i}".encode() | |
pk_raw = publickey(sk_raw) | |
assert pk_raw == pk.public_bytes_raw() | |
sig = signature(msg, sk_raw, pk_raw) | |
checkvalid(sig, msg, pk_raw) | |
pk.verify(sig, msg) | |
sig2 = sk.sign(msg) | |
assert sig == sig2 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment