Created
November 15, 2011 01:39
-
-
Save marcelcaraciolo/1365847 to your computer and use it in GitHub Desktop.
logistic_reg.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from numpy import loadtxt, where, zeros, e, array, log, ones, append, linspace | |
from pylab import scatter, show, legend, xlabel, ylabel, contour, title | |
from scipy.optimize import fmin_bfgs | |
def sigmoid(X): | |
'''Compute the sigmoid function ''' | |
#d = zeros(shape=(X.shape)) | |
den = 1.0 + e ** (-1.0 * X) | |
d = 1.0 / den | |
return d | |
def cost_function_reg(theta, X, y, l): | |
'''Compute the cost and partial derivatives as grads | |
''' | |
h = sigmoid(X.dot(theta)) | |
thetaR = theta[1:, 0] | |
J = (1.0 / m) * ((-y.T.dot(log(h))) - ((1 - y.T).dot(log(1.0 - h)))) \ | |
+ (l / (2.0 * m)) * (thetaR.T.dot(thetaR)) | |
delta = h - y | |
sumdelta = delta.T.dot(X[:, 1]) | |
grad1 = (1.0 / m) * sumdelta | |
XR = X[:, 1:X.shape[1]] | |
sumdelta = delta.T.dot(XR) | |
grad = (1.0 / m) * (sumdelta + l * thetaR) | |
out = zeros(shape=(grad.shape[0], grad.shape[1] + 1)) | |
out[:, 0] = grad1 | |
out[:, 1:] = grad | |
return J.flatten(), out.T.flatten() | |
m, n = X.shape | |
y.shape = (m, 1) | |
it = map_feature(X[:, 0], X[:, 1]) | |
#Initialize theta parameters | |
initial_theta = zeros(shape=(it.shape[1], 1)) | |
#Set regularization parameter lambda to 1 | |
l = 1 | |
# Compute and display initial cost and gradient for regularized logistic | |
# regression | |
cost, grad = cost_function_reg(initial_theta, it, y, l) | |
def decorated_cost(theta): | |
return cost_function_reg(theta, it, y, l) | |
print fmin_bfgs(decorated_cost, initial_theta, maxfun=400) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
hi, nice posts, helped me a lot.
I just fixed some functions and this is working for me:
def fcost(theta, X, y, l):
m = y.size
h = sigmoid(X.dot(theta))
theta[0] = 0
sreg = theta.T.dot(theta)
reg = (l/(2*m)) * sreg
left = -y.T.dot(log(h))
right = (1-y).T.dot(log(1-h))
diff = left - right
J = (diff / m) + reg
return J
def fgradient(theta, X, y, l):
m = y.size
h = sigmoid(X.dot(theta))
h.shape = (m,1)
theta[0] = 0
hx = X.T.dot(h-y)
reg = theta * (l/m)
reg.shape = hx.shape
grad = (hx / m) + reg
return grad.flatten()
...
it = map_feature(X[:, 0], X[:, 1])
X = it
initial_theta = zeros(shape=(it.shape[1], 1))
l = 1
myargs = (X, y, l)
theta = (fmin_bfgs(fcost, x0=initial_theta, fprime=fgradient, args=myargs, maxiter =400))
..