Created
October 4, 2019 00:25
-
-
Save marceloreichert/df92852506e796e1968c02caaeee1bf5 to your computer and use it in GitHub Desktop.
Elixir and Reinforcement Learning - IV
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
defmodule AutonomousCar.NeuralNetwork.Network do | |
alias AutonomousCar.NeuralNetwork.{Layer, Network, Neuron} | |
alias AutonomousCar.Math.Activation | |
defstruct pid: nil, input_layer: nil, hidden_layers: [], output_layer: nil, error: 0 | |
def start_link(layer_sizes \\ []) do | |
{:ok, pid} = Agent.start_link(fn -> %Network{} end) | |
layers = | |
map_layers( | |
input_neurons(layer_sizes), | |
hidden_neurons(layer_sizes), | |
output_neurons(layer_sizes) | |
) | |
pid |> update_layers(layers) | |
pid |> connect_layers | |
{:ok, pid} | |
end | |
def get(pid), do: Agent.get(pid, & &1) | |
def update_layers(pid, layers) do | |
layers = Map.merge(layers, %{pid: pid}) | |
Agent.update(pid, &Map.merge(&1, layers)) | |
end | |
def predict(network, input_values) do | |
network.input_layer | |
|> Layer.activate(:relu, input_values) | |
Enum.each(network.hidden_layers, fn hidden_layer -> | |
hidden_layer | |
|> Layer.activate(:relu) | |
end) | |
network.output_layer | |
|> Layer.activate(:sigmoid) | |
prob_actions = | |
network.output_layer | |
|> Layer.get() | |
|> Layer.neurons_output() | |
|> Activation.calculate_output(:softmax) | |
action = | |
prob_actions | |
|> Enum.find_index(fn value -> Enum.max(prob_actions) == value end) | |
end | |
defp input_neurons(layer_sizes) do | |
size = layer_sizes |> List.first() | |
{:ok, pid} = Layer.start_link(%{neuron_size: size}) | |
pid | |
end | |
defp hidden_neurons(layer_sizes) do | |
layer_sizes | |
|> hidden_layer_slice | |
|> Enum.map(fn size -> | |
{:ok, pid} = Layer.start_link(%{neuron_size: size}) | |
pid | |
end) | |
end | |
defp output_neurons(layer_sizes) do | |
size = layer_sizes |> List.last() | |
{:ok, pid} = Layer.start_link(%{neuron_size: size}) | |
pid | |
end | |
defp hidden_layer_slice(layer_sizes) do | |
layer_sizes | |
|> Enum.slice(1..(length(layer_sizes) - 2)) | |
end | |
defp connect_layers(pid) do | |
layers = | |
pid | |
|> Network.get() | |
|> flatten_layers | |
layers | |
|> Stream.with_index() | |
|> Enum.each(fn tuple -> | |
{layer, index} = tuple | |
next_index = index + 1 | |
if Enum.at(layers, next_index) do | |
Layer.connect(layer, Enum.at(layers, next_index)) | |
end | |
end) | |
end | |
defp flatten_layers(network) do | |
[network.input_layer] ++ network.hidden_layers ++ [network.output_layer] | |
end | |
defp map_layers(input_layer, hidden_layers, output_layer) do | |
%{ | |
input_layer: input_layer, | |
output_layer: output_layer, | |
hidden_layers: hidden_layers | |
} | |
end | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment