Last active
May 9, 2023 18:28
-
-
Save marcj/e102b22b8d1818926d9186bf09c6c35b to your computer and use it in GitHub Desktop.
Mini calculator LSTM
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
This script tests how good LSTMs are at solving mini calc tasks like 1+2, 3+4, 5*5. | |
The challenge is that the input is as string and can have arbitrary many whitespaces between the numbers and operator. | |
"1+2" | |
" 2 * 4" | |
" 3 + 3" | |
To have the problem simple enough, only 1 digit numbers are allowed. So 1+2, but not 11+2. And only 2 operators: + and *. | |
""" | |
import random | |
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
from summary import summary | |
vocab_size = 10 + 3 | |
embed_size = 3 | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
max_num = 10 | |
def tokenize(text): | |
# vocab: '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', ' ', '+', '*' | |
# covert ' ', '+', '*' to 10, 11, 12 | |
res = [] | |
for c in text: | |
if c.isdigit(): | |
res.append(int(c)) | |
elif c == ' ': | |
res.append(10) | |
elif c == '+': | |
res.append(11) | |
elif c == '*': | |
res.append(12) | |
return torch.tensor(res, device=device) | |
samples = [] | |
# generate 100 samples. sample 2 numbers and their sum, then create a string with arbitrary space between the 2 numbers | |
for i in range(500): | |
a = torch.randint(0, max_num, (1,)) | |
b = torch.randint(0, max_num, (1,)) | |
spaces_start = random.randint(0, 2) | |
spaces_middle = random.randint(0, 2) | |
spaces_end = random.randint(0, 2) | |
op = random.choice(['+', '*']) | |
if op == '+': | |
c = a + b | |
else: | |
c = a * b | |
string = (' ' * spaces_start) + str(a.item()) + (' ' * spaces_middle) + op + str(b.item()) + (' ' * spaces_end) | |
samples.append([tokenize(string), c.type(torch.float32).to(device)]) | |
class SimpleMathNet(nn.Module): | |
def __init__(self): | |
super(SimpleMathNet, self).__init__() | |
self.word_embeddings = nn.Embedding(vocab_size, embed_size) | |
self.lstm = nn.LSTM(embed_size, 10) | |
self.fc1 = nn.Linear(10, 5) | |
self.fc2 = nn.Linear(5, 1) | |
def forward(self, s): | |
x = self.word_embeddings(s) | |
_, (h_n, _) = self.lstm(x) | |
y = torch.relu(self.fc1(h_n.view(-1))) | |
y = self.fc2(y) | |
return y | |
def test(string): | |
input = tokenize(string) | |
with torch.no_grad(): | |
y = net(input) | |
print(f"{string} = {y.item()} ({input} = {y}") | |
# Example usage | |
net = SimpleMathNet() | |
optimizer = optim.Adam(net.parameters(), lr=0.001) | |
summary(net, [samples[0][0]]) | |
test(' 1+2') | |
def train(epochs=100): | |
for epoch in range(epochs): | |
running_loss = 0.0 | |
for sample in samples: | |
x, y = sample | |
optimizer.zero_grad() | |
output = net(x) | |
loss = torch.nn.functional.mse_loss(output, y) | |
loss.backward() | |
running_loss += loss.item() | |
optimizer.step() | |
print(f"Epoch {epoch}: Loss: ", running_loss / len(samples)) | |
test('1 + 1') | |
test('1 + 2') | |
test('2 + 4') | |
test('2 * 4') | |
test(' 1 + 6 ') | |
test(' 2 * 4 ') | |
train() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment