You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
How to convert the SalesForce CodeGen models to GPT-J
Using Linear Algebra to Convert a Large Code Model
Background
The SalesForce CodeGen models are a family of large language models trained on a large amount of natural language data and then fine-tuned on specialized datasets of code. Models of size 350M, 2B, 6B, and 16B parameters are provided in three flavors:
nl, the base model trained on The Pile, a large natural language dataset compiled by EleutherAI
multi, which is fine-tuned from the nl model on a dataset of code in multiple languages, scraped from GitHub, and
mono, which is fine-tuned from the multi model on Python code only.
With the release of the ChatGPT model and followup large language models (LLMs), there was a lot of discussion of the importance of "RLHF training", that is, "reinforcement learning from human feedback".
I was puzzled for a while as to why RL (Reinforcement Learning) is better than learning from demonstrations (a.k.a supervised learning) for training language models. Shouldn't learning from demonstrations (or, in language model terminology "instruction fine tuning", learning to immitate human written answers) be sufficient? I came up with a theoretical argument that was somewhat convincing. But I came to realize there is an additional argumment which not only supports the case of RL training, but also requires it, in particular for models like ChatGPT. This additional argument is spelled out in (the first half of) a talk by John Schulman from OpenAI. This post pretty much
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters