Last active
January 25, 2017 14:52
-
-
Save marcoemorais/03dff1a06f49da16a3a0e0b245e5a692 to your computer and use it in GitHub Desktop.
Marco's pandas examples with DataFrame
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
import unittest | |
import pandas as pd | |
class AllTest(unittest.TestCase): | |
def test_all(self): | |
wf_data = {'id':['wf','wf2','wf3'], 'states':['s1','s2','s3']} | |
wf_df = pd.DataFrame(wf_data) | |
self.assertFalse(wf_df['states'].isin(['s1','s3']) | |
.all()) # 2 of 3 states. | |
self.assertTrue(wf_df['states'].isin(['s1','s2','s3']) | |
.all()) # 3 of 3 states. | |
if __name__ == '__main__': | |
unittest.main(verbosity=2) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
import unittest | |
import pandas as pd | |
class ApplyTest(unittest.TestCase): | |
def test_apply(self): | |
wf_data = {'id':['wf1','wf2','wf3'], 'states':['s1','s2','s3']} | |
wf_df = pd.DataFrame(wf_data) | |
strs = wf_df.apply(lambda row: '%s,%s' % (row['id'], row['states']), | |
axis=1).tolist() | |
self.assertEqual(sorted(['wf1,s1', 'wf2,s2', 'wf3,s3']), sorted(strs)) | |
if __name__ == '__main__': | |
unittest.main(verbosity=2) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
import itertools | |
import unittest | |
import pandas as pd | |
class CrossProductTest(unittest.TestCase): | |
def test_cross_product(self): | |
aoi_data = {'aoi':['aoi1','aoi2','aoi3'], 'wkt':['pt1','pt2','pt3']} | |
aoi_df = pd.DataFrame(aoi_data) | |
num_aoi = aoi_df.shape[0] | |
scene_data = {'scene':['s1','s2','s3']} | |
scene_df = pd.DataFrame(scene_data) | |
num_scene = scene_df.shape[0] | |
df = pd.DataFrame([[aoi, scene] for aoi, scene in | |
itertools.product(aoi_df['aoi'], scene_df['scene'])], | |
columns=['aoi', 'scene']) | |
self.assertEqual(num_aoi * num_scene, df.shape[0]) | |
self.assertEqual(sorted(['s1','s2','s3']), | |
sorted(df.loc[df['aoi'] == 'aoi1']['scene'].tolist())) | |
if __name__ == '__main__': | |
unittest.main(verbosity=2) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
import unittest | |
import pandas as pd | |
class GroupbyTest(unittest.TestCase): | |
def test_groupby(self): | |
algo_specs = {'id': ['a1','a1','a1','a2','a2'], | |
'source': ['s1','s2','s3','s3','s4']} | |
algo_specs_df = pd.DataFrame(algo_specs) | |
groupby_df = algo_specs_df.groupby(by='id') | |
algo_source_df = algo_specs_df.groupby(by='id')['source'].apply(list) | |
self.assertEqual(sorted(['s1','s2','s3']), | |
sorted(algo_source_df['a1'])) | |
self.assertEqual(sorted(['s3','s4']), | |
sorted(algo_source_df['a2'])) | |
if __name__ == '__main__': | |
unittest.main(verbosity=2) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
import unittest | |
import pandas as pd | |
class InnerJoinTest(unittest.TestCase): | |
def test_inner_join_one_to_one(self): | |
lhs_data = {'id':['id1', 'id2', 'id3'], 'data':[1, 2, 3]} | |
lhs_df = pd.DataFrame(lhs_data) | |
rhs_data = {'id':['id1', 'id2', 'id3'], 'data':[10, 20, 30]} | |
rhs_df = pd.DataFrame(rhs_data) | |
df = lhs_df.merge(rhs_df, on='id', how='inner') | |
self.assertEqual((3, 3), df.shape) | |
self.assertEqual(sorted(['id1', 'id2', 'id3']), sorted(df['id'].tolist())) | |
self.assertEqual(sorted([1, 2, 3]), sorted(df['data_x'].tolist())) | |
self.assertEqual(sorted([10, 20, 30]), sorted(df['data_y'].tolist())) | |
def test_inner_join_not_all_join(self): | |
lhs_data = {'id':['id1', 'id2', 'id3', 'id4'], 'data':[1, 2, 3, 4]} | |
lhs_df = pd.DataFrame(lhs_data) | |
rhs_data = {'id':['id1', 'id2', 'id3'], 'data':[10, 20, 30]} | |
rhs_df = pd.DataFrame(rhs_data) | |
df = lhs_df.merge(rhs_df, on='id', how='inner') | |
self.assertEqual((3, 3), df.shape) | |
self.assertEqual(sorted(['id1', 'id2', 'id3']), sorted(df['id'].tolist())) | |
self.assertEqual(sorted([1, 2, 3]), sorted(df['data_x'].tolist())) | |
self.assertEqual(sorted([10, 20, 30]), sorted(df['data_y'].tolist())) | |
def test_inner_join_composite(self): | |
lhs_data = {'id1':['id1', 'id2', 'id3'], | |
'id2':['idA', 'idB', 'idC'], | |
'data':[1, 2, 3]} | |
lhs_df = pd.DataFrame(lhs_data) | |
rhs_data = {'id1':['id1', 'id2', 'id4'], | |
'id2':['idA', 'idB', 'idD'], | |
'data':[10, 20, 40]} | |
rhs_df = pd.DataFrame(rhs_data) | |
df = lhs_df.merge(rhs_df, on=['id1', 'id2'], how='inner') | |
self.assertEqual((2, 4), df.shape) | |
self.assertEqual(sorted(['id1', 'id2']), sorted(df['id1'].tolist())) | |
self.assertEqual(sorted(['idA', 'idB']), sorted(df['id2'].tolist())) | |
self.assertEqual(sorted([1, 2]), sorted(df['data_x'].tolist())) | |
self.assertEqual(sorted([10, 20]), sorted(df['data_y'].tolist())) | |
if __name__ == '__main__': | |
unittest.main(verbosity=2) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
import unittest | |
import pandas as pd | |
class IsInTest(unittest.TestCase): | |
def test_isin(self): | |
algo_specs = {'id': ['a1','a1','a1','a2','a2'], | |
'source': ['s1','s2','s3','s3','s4'], | |
'valid_sources': [['s1','s2']] * 5} | |
algo_specs_df = pd.DataFrame(algo_specs) | |
is_valid_sources_mask = algo_specs_df['source'].isin(algo_specs_df['valid_sources'].values) | |
#groupby_df = algo_specs_df.groupby(by='id') | |
#algo_source_df = algo_specs_df.groupby(by='id')['source'].apply(list) | |
#self.assertEqual(sorted(['s1','s2','s3']), | |
# sorted(algo_source_df['a1'])) | |
#self.assertEqual(sorted(['s3','s4']), | |
# sorted(algo_source_df['a2'])) | |
if __name__ == '__main__': | |
unittest.main(verbosity=2) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
import unittest | |
import pandas as pd | |
class LeftRightJoinTest(unittest.TestCase): | |
def test_left_join(self): | |
lhs_data = {'id':['id1', 'id2', 'id3', 'id4'], 'data':[1, 2, 3, 4]} | |
lhs_df = pd.DataFrame(lhs_data) | |
rhs_data = {'id':['id1', 'id2', 'id3'], 'data':[1, 2, 3]} | |
rhs_df = pd.DataFrame(rhs_data) | |
df = lhs_df.merge(rhs_df, left_on='id', right_on='id', how='left') | |
self.assertEqual((4, 3), df.shape) | |
self.assertEqual(sorted(['id1', 'id2', 'id3', 'id4']), | |
sorted(df['id'].tolist())) | |
self.assertEqual(sorted([1, 2, 3, 4]), | |
sorted(df['data_x'].tolist())) | |
self.assertEqual(sorted([1, 2, 3]), # Missing values filled as NaN. | |
sorted(df[df['data_y'].notnull()]['data_y'].tolist())) | |
def test_right_join(self): | |
lhs_data = {'id':['id1', 'id2', 'id3', 'id4'], 'data':[1, 2, 3, 4]} | |
lhs_df = pd.DataFrame(lhs_data) | |
rhs_data = {'id':['id1', 'id2', 'id3'], 'data':[1, 2, 3]} | |
rhs_df = pd.DataFrame(rhs_data) | |
df = lhs_df.merge(rhs_df, left_on='id', right_on='id', how='right') | |
self.assertEqual((3, 3), df.shape) | |
self.assertEqual(sorted(['id1', 'id2', 'id3']), | |
sorted(df['id'].tolist())) | |
self.assertEqual(sorted([1, 2, 3]), | |
sorted(df['data_x'].tolist())) | |
self.assertEqual(sorted([1, 2, 3]), | |
sorted(df['data_y'].tolist())) | |
if __name__ == '__main__': | |
unittest.main(verbosity=2) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
import unittest | |
import pandas as pd | |
class MaskTest(unittest.TestCase): | |
def test_query(self): | |
wf_data = {'id':['wf1','wf2','wf3'], 'states':['s1','s2','s3']} | |
wf_df = pd.DataFrame(wf_data) | |
mask_df = wf_df[(wf_df['id'] == 'wf1') | (wf_df['id'] == 'wf3')] | |
expected_df = pd.DataFrame([('wf1', 's1'), ('wf3', 's3')], | |
columns=['id', 'states']) | |
for column in ['id', 'states']: | |
self.assertEqual(sorted(mask_df[column].tolist()), | |
sorted(expected_df[column].tolist())) | |
if __name__ == '__main__': | |
unittest.main(verbosity=2) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
import unittest | |
import pandas as pd | |
class QueryTest(unittest.TestCase): | |
def test_query(self): | |
wf_data = {'id':['wf1','wf2','wf3'], 'states':['s1','s2','s3']} | |
wf_df = pd.DataFrame(wf_data) | |
query_df = wf_df.query('id == "wf1" or id == "wf3"') | |
expected_df = pd.DataFrame([('wf1', 's1'), ('wf3', 's3')], | |
columns=['id', 'states']) | |
for column in ['id', 'states']: | |
self.assertEqual(sorted(query_df[column].tolist()), | |
sorted(expected_df[column].tolist())) | |
if __name__ == '__main__': | |
unittest.main(verbosity=2) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
import unittest | |
import pandas as pd | |
class ReindexTest(unittest.TestCase): | |
def test_reindex(self): | |
wf_data = {'id':['wf1','wf2','wf3'], 'states':['s1','s2','s3']} | |
wf_df = pd.DataFrame(wf_data, index=wf_data['id']) | |
wf_order = ['wf2', 'wf3', 'wf1'] | |
reindex_wf_df = wf_df.reindex(wf_order) | |
self.assertEqual(wf_order, reindex_wf_df['id'].tolist()) | |
if __name__ == '__main__': | |
unittest.main(verbosity=2) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
import unittest | |
import pandas as pd | |
class ToDictTest(unittest.TestCase): | |
def test_to_dict(self): | |
wf_data = {'id':['wf1','wf2','wf3'], 'states':['s1','s2','s3']} | |
wf_df = pd.DataFrame(wf_data) | |
wf_dict = wf_df.to_dict(orient='records') | |
self.assertEqual(sorted([{'id': 'wf1', 'states': 's1'}, | |
{'id': 'wf2', 'states': 's2'}, | |
{'id': 'wf3', 'states': 's3'}]), | |
sorted(wf_dict)) | |
if __name__ == '__main__': | |
unittest.main(verbosity=2) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment