Last active
December 5, 2017 09:49
-
-
Save marcoleewow/037fc43733260300083aab0db2d7d9a8 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import tensorflow as tf | |
def CTCLossExactPathTest(): | |
BIG_NEG_NUMBER = -100 | |
logit = np.array([[BIG_NEG_NUMBER, 0., BIG_NEG_NUMBER, BIG_NEG_NUMBER], | |
[0., BIG_NEG_NUMBER, BIG_NEG_NUMBER, BIG_NEG_NUMBER], | |
[BIG_NEG_NUMBER, BIG_NEG_NUMBER, 0., BIG_NEG_NUMBER]]) | |
""" | |
Take softmax will give us: | |
softmax = [[0., 1., 0., 0.], | |
[1., 0., 0., 0.], | |
[0., 0., 1., 0.]] | |
""" | |
logit = tf.constant(logit, dtype='float32') | |
# label = [1, 0, 2] | |
# target = tf.SparseTensor(indices=[[0, 0], [0, 2]], values=[1, 2], dense_shape=[1, 3]) # this line gave error! | |
target = tf.SparseTensor(indices=[[0, 0], [0, 1], [0, 2]], values=[1, 0, 2], dense_shape=[1, 3]) | |
seq = tf.constant(np.array([3]), dtype='int32') | |
logit = tf.expand_dims(logit, axis=1) | |
# CTC loss | |
loss = tf.nn.ctc_loss(target, logit, seq) | |
# run session | |
with tf.Session() as sess: | |
prob = sess.run([loss]) | |
print('Tensorflow CTC calculated negative log prob = %.4f' % prob[0]) | |
# neg log probability should give us 0. | |
assert prob[0] == 0. | |
CTCLossExactPathTest() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment