Last active
September 20, 2017 02:38
-
-
Save marcoleewow/c28f377fc206dec1b14813e10470fd9e to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from keras import backend as K | |
from keras.layers import * | |
from keras.preprocessing.image import ImageDataGenerator | |
from keras.models import Sequential, Model | |
from keras.optimizers import SGD, Adam | |
np.random.seed(1337) # for reproducibility | |
batch_size = 32 | |
num_epochs = 1000 | |
width = 300 | |
height = 300 | |
# count folders in data_dir | |
num_classes = 168 | |
# Input | |
inputs = Input(name='the_input', shape=(300, 300, 3), dtype='float32') | |
# input shape = (batch_size, 300, 300, 3) | |
conv1 = Conv2D(64, (3, 3), activation='relu')(inputs) | |
maxpool1 = MaxPooling2D(pool_size=(4, 4))(conv1) | |
conv2 = Conv2D(128, (3, 3), activation='relu')(maxpool1) | |
maxpool2 = MaxPooling2D(pool_size=(4, 4))(conv2) | |
conv3 = Conv2D(256, (3, 3), activation='relu')(maxpool2) | |
maxpool3 = MaxPooling2D(pool_size=(4, 4))(conv3) | |
conv4 = Conv2D(512, (3, 3), activation='relu')(maxpool3) | |
maxpool4 = MaxPooling2D(pool_size=(2, 2))(conv4) | |
# now the shape = (batch_size, 1, 1, 512), so need to squeeze twice. | |
features = Lambda(lambda x: K.squeeze(x, 1))(maxpool4) | |
features = Lambda(lambda x: K.squeeze(x, 1))(features) | |
# now the shape = (batch_size, 512) | |
y_pred = Dense(num_classes, activation='softmax')(features) | |
# now y_pred has the shape = (batch_size, num_classess) | |
model = Model(inputs=[inputs], outputs=[y_pred]) | |
# compile model | |
model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.01), metrics=['accuracy']) | |
# datasets and dataloader for train mode | |
train_datagen = ImageDataGenerator() | |
train_generator = train_datagen.flow_from_directory('/workspace/hongkong_flowers/dataset/sorted/train/', | |
batch_size=batch_size, | |
target_size=(height, width), | |
class_mode='categorical') | |
valid_datagen = ImageDataGenerator() | |
valid_generator = valid_datagen.flow_from_directory('/workspace/hongkong_flowers/dataset/sorted/valid/', | |
batch_size=batch_size, | |
target_size=(height, width), | |
class_mode='categorical') | |
train_step = train_generator.samples // batch_size | |
valid_step = valid_generator.samples // batch_size | |
# # Generate dummy data | |
# x_train = np.random.random((10, 300, 300, 3)) | |
# y_train = np.random.randint(num_classes, size=(10, 1)) | |
# # for trying out few images only | |
# from PIL import Image | |
# x_train = [] | |
# y_train = [] | |
# import os | |
# train_dir = '/workspace/hongkong_flowers/dataset/sorted/train/' | |
# dir_list = os.listdir(train_dir) | |
# dir_list.remove('.DS_Store') | |
# for i, dir in enumerate(dir_list): | |
# try: | |
# x_train.append(np.asarray(Image.open(train_dir + "%s/00.jpg" % dir))) | |
# except IOError: | |
# x_train.append(np.asarray(Image.open(train_dir + '%s/01.jpg' % dir))) | |
# y_train.append(i) | |
# x_train = np.asarray(x_train) | |
# y_train = np.asarray(y_train) | |
# | |
# model.fit(x_train, y_train, | |
# epochs=2000, | |
# batch_size=2) | |
# fit the model | |
model.fit_generator(generator=train_generator, | |
steps_per_epoch=train_step, | |
epochs=num_epochs, | |
validation_data=valid_generator, | |
validation_steps=valid_step) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment