Last active
August 11, 2016 06:42
-
-
Save marcoonroad/216b3a2d6224f45d4a4b317cddb3ae7e to your computer and use it in GitHub Desktop.
Simple gradual typechecker with parametricity & inference written in Prolog.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
% begin | |
% --- typing environment --- | |
% empty context always fails on queries, | |
% that is, there are unbound variables... | |
% find :: env * var * type -> prop | |
find([ type(X, T) | _ ], X, T). | |
find([ _ | E ], X, T) :- | |
find(E, X, T). | |
% --- typing relations --- | |
% casts are only allowed to concrete types | |
% type :: dynamic | unit | bool | nat | |
type(dynamic). | |
type(unit). | |
type(bool). | |
type(nat). | |
% this order implies type inference's result, | |
% so, the precendence is for identical types. | |
% used on subsumption/substituition of types. | |
% subtype :: type * type -> prop | |
subtype(arrow(A, B), arrow(C, D)) :- | |
subtype(C, A), | |
subtype(B, D). | |
subtype(T, T). | |
subtype(dynamic, _). | |
% supertype :: type * type -> prop | |
supertype(A, B) :- | |
subtype(B, A). | |
% this doesn't imply type inference's result. | |
% used to compare types for proper explicit | |
% casts, otherwise, the cast is invalid, that | |
% is, only upcasts and dowcasts on dynamic | |
% type are allowed... | |
% equiv :: type * type -> prop | |
equiv(T, T). | |
equiv(dynamic, _). | |
equiv(_, dynamic). | |
% --- lambda terms --- | |
% nat :: zero | succ (nat) | |
nat(zero). | |
nat(succ(N)) :- nat(N). | |
% expr :: unit | |
% | true | |
% | false | |
% | nat | |
% | if (expr, expr, expr) | |
% | cast (expr, type) | |
% | var (X) | |
% | abstr (X, expr) | |
% | abstr (X, type, expr) | |
% | appl (expr, expr) | |
% | let (X, expr, expr) | |
% | let (X, type, expr, expr) | |
expr(unit). | |
expr(true). | |
expr(false). | |
expr(N) :- nat(N). | |
expr(if(X, Y, Z)) :- | |
expr(X), expr(Y), expr(Z). | |
expr(cast(X, _)) :- | |
expr(X). | |
expr(var(_)). | |
expr(appl(M, N)) :- | |
expr(M), expr(N). | |
expr(abstr(X, M)) :- | |
expr(var(X)), | |
expr(M). | |
expr(abstr(X, _, M)) :- | |
expr(abstr(X, M)). | |
expr(let(X, M, N)) :- | |
expr(var(X)), | |
expr(M), | |
expr(N). | |
expr(let(X, _, M, N)) :- | |
expr(let(X, M, N)). | |
% --- "bidirectional" typechecker --- | |
% this is a subtle fact, but there's no such | |
% bidirectional typechecker algorithm written | |
% in logic programming languages, so, in some | |
% way, it's a kind of design pattern on FP to | |
% fake some Logic Programming properties... | |
% also, typing rules from Type Theory map (near) | |
% one-to-one in Logic Programming clauses... | |
% Γ ⊢ M:α → β | |
% Γ ⊢ N:γ γ ≤ α | |
% ————————————————— | |
% Γ ⊢ (M N):β | |
infer(E, appl(M, N), B) :- | |
expr(appl(M, N)), | |
infer(E, M, arrow(A, B)), | |
infer(E, N, C), | |
subtype(A, C). | |
% Γ, x:α ⊢ • | |
% ——————————— | |
% Γ ⊢ x:α | |
infer(E, var(X), A) :- | |
expr(var(X)), | |
find(E, X, A). | |
% Γ, x:α ⊢ M:β | |
% ——————————————————— | |
% Γ ⊢ (λx:α.M):α → β | |
infer(E, abstr(X, M), arrow(A, B)) :- | |
expr(abstr(X, M)), | |
infer([ type(X, A) | E ], M, B). | |
infer(E, abstr(X, T, M), arrow(T, A)) :- | |
expr(abstr(X, T, M)), | |
infer(E, abstr(X, M), arrow(T, A)). | |
% Γ ⊢ M:β Γ, x:β ⊢ N:α | |
% ———————————————————————— | |
% Γ ⊢ (let x:β = M in N):α | |
infer(E, let(X, M, N), A) :- | |
expr(let(X, M, N)), | |
infer(E, M, B), | |
infer([ type(X, B) | E ], N, A). | |
% Γ ⊢ M:β Γ, x:τ ⊢ N:α | |
% β ≤ τ | |
% ————————————————————————— | |
% Γ ⊢ (let x:τ = M in N):α | |
infer(E, let(X, T, M, N), A) :- | |
expr(let(X, T, M, N)), | |
infer(E, M, B), | |
subtype(T, B), | |
infer([ type(X, T) | E ], N, A). | |
% Γ ⊢ M:α α ~ τ | |
% ————————————————— | |
% Γ ⊢ (M as τ):τ | |
infer(E, cast(M, T), T) :- | |
expr(cast(M, T)), | |
type(T), | |
infer(E, M, A), | |
equiv(A, T). | |
% Γ ⊢ M:bool Γ ⊢ N:β | |
% Γ ⊢ O:γ β ≤ α γ ≤ α | |
% ——————————————————————————— | |
% Γ ⊢ (if M then N else O):α | |
infer(E, if(M, N, O), A) :- | |
expr(if(M, N, O)), | |
check(E, M, bool), | |
infer(E, N, B), | |
infer(E, O, C), | |
subtype(A, B), | |
subtype(A, C). | |
% --- axioms --- | |
% | |
% | |
% ————————————— | |
% Γ ⊢ unit:unit | |
infer(_, unit, unit). | |
% —————————————— | |
% Γ ⊢ true:bool | |
infer(_, true, bool). | |
% ——————————————— | |
% Γ ⊢ false:bool | |
infer(_, false, bool). | |
% —————————— | |
% Γ ⊢ 0:nat | |
% | |
% ————————————————————— | |
% Γ, n:nat ⊢ (n+1):nat | |
infer(_, N, nat) :- | |
nat(N). | |
% aliases | |
check(E, X, T) :- | |
infer(E, X, T). | |
infer(X, T) :- | |
infer([ ], X, T). | |
check(X, T) :- | |
check([ ], X, T). | |
% end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment