Skip to content

Instantly share code, notes, and snippets.

@marcosan93
Created September 23, 2021 18:48
Show Gist options
  • Save marcosan93/17d172490586d07d63047f633891d428 to your computer and use it in GitHub Desktop.
Save marcosan93/17d172490586d07d63047f633891d428 to your computer and use it in GitHub Desktop.
def visFBP(df, forecast):
"""
Given two dataframes: before training df and a forecast df, returns
a visual chart of the predicted values and actual values.
"""
# Visual DF
vis_df = df[['ds','Open']].append(forecast).rename(
columns={'yhat': 'Prediction',
'yhat_upper': "Predicted High",
'yhat_lower': "Predicted Low"}
)
# Visualizing results
fig = px.line(
vis_df,
x='ds',
y=['Open', 'Prediction', 'Predicted High', 'Predicted Low'],
title='Crypto Forecast',
labels={'value':'Price',
'ds': 'Date'}
)
# Adding a slider
fig.update_xaxes(
rangeselector=dict(
buttons=list([
dict(count=1, label="1m", step="month", stepmode="backward"),
dict(count=3, label="3m", step="month", stepmode="backward"),
dict(count=6, label="6m", step="month", stepmode="backward"),
dict(count=1, label="YTD", step="year", stepmode="todate"),
dict(count=1, label="1y", step="year", stepmode="backward"),
dict(step="all")
])
)
)
return fig.show()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment