Skip to content

Instantly share code, notes, and snippets.

@marcosan93
Created November 11, 2021 00:36
Show Gist options
  • Select an option

  • Save marcosan93/9e5ebed50604776256365e7383f2cf71 to your computer and use it in GitHub Desktop.

Select an option

Save marcosan93/9e5ebed50604776256365e7383f2cf71 to your computer and use it in GitHub Desktop.
# Other models
from sklearn.ensemble import AdaBoostClassifier, GradientBoostingClassifier, RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
models = {
"adaboost":AdaBoostClassifier(random_state=11),
"gradboost":GradientBoostingClassifier(random_state=11),
"rf":RandomForestClassifier(random_state=11),
"knn":KNeighborsClassifier(),
"logreg":LogisticRegression(solver='liblinear'),
"nb":GaussianNB(),
"svm":SVC(),
"dec_tree": DecisionTreeClassifier()
}
for model_name, model in models.items():
# Fitting
clf = model
clf.fit(X_train, y_train)
# Predictions
preds = clf.predict(X_test)
#Printing out results
report = classification_report(y_test, preds)
print(model_name+"\n",report)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment