Created
August 6, 2020 17:29
-
-
Save marcossilva/99fd1db9cbea2dd542230c6e7c4fd6a2 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import boto3 | |
import sagemaker | |
from sagemaker.amazon.amazon_estimator import get_image_uri | |
import json | |
import glob | |
sess = sagemaker.Session() | |
bucket = 'workspace-foguetes' | |
dataset_name = 'VOC2007' | |
train_data = f's3://{bucket}/datasets/{dataset_name}/train_images' | |
validation_data = f's3://{bucket}/datasets/{dataset_name}/val_images' | |
train_annotation = f's3://{bucket}/datasets/{dataset_name}/train_labels' | |
validation_annotation = f's3://{bucket}/datasets/{dataset_name}/val_labels' | |
output_location = f's3://{bucket}/datasets/{dataset_name}/output' | |
checkpoint_location = f's3://{bucket}/datasets/{dataset_name}/model_checkpoints' | |
train_data_len = len(glob.glob(f'./data/{dataset_name}/train_images/*')) | |
val_data_len = len(glob.glob(f'./data/{dataset_name}/val_images/*')) | |
annotations_dict = json.loads(open('classes.json').read()) | |
print(f'{train_data_len} training samples') | |
print(f'{val_data_len} validation samples') | |
training_image = get_image_uri(sess.boto_region_name, 'object-detection', repo_version="latest") | |
od_model = sagemaker.estimator.Estimator( | |
training_image, | |
'arn:aws:iam::493093903190:role/service-role/AmazonSageMaker-ExecutionRole-20190415T182908', | |
train_instance_count=1, | |
train_instance_type='ml.p2.xlarge', | |
train_volume_size = 30, | |
train_max_run = 18000, | |
input_mode = 'File', | |
output_path=output_location, | |
sagemaker_session=sess, | |
base_job_name='treino-adam-eva-14k', | |
model_uri=None, | |
train_use_spot_instances=True, | |
train_max_wait=18000, | |
checkpoint_s3_uri=checkpoint_location, | |
enable_sagemaker_metrics=True | |
) | |
od_model.set_hyperparameters( | |
base_network='vgg-16', | |
use_pretrained_model=1, | |
num_classes=len(annotation_dict), | |
mini_batch_size=8, | |
epochs=200, | |
learning_rate=0.001, | |
lr_scheduler_step='10', | |
lr_scheduler_factor=0.1, | |
optimizer='adam', | |
momentum=0.9, | |
weight_decay=0.0005, | |
overlap_threshold=0.5, | |
nms_threshold=0.45, | |
image_shape=512, | |
label_width=12, | |
num_training_samples=train_data_len, | |
early_stopping=True, | |
early_stopping_min_epochs=30, | |
early_stopping_patience=30, | |
freeze_layer_pattern="^(conv1_|conv2_|conv3_|conv4_).*" | |
) | |
def initialize_channes(x): | |
return sagemaker.session.s3_input( | |
x, | |
distribution='FullyReplicated', | |
content_type='image/png', | |
s3_data_type='S3Prefix' | |
) | |
data_channels = { | |
'train': initialize_channes(train_data), | |
'validation': initialize_channes(validation_data), | |
'train_annotation': initialize_channes(train_annotation), | |
'validation_annotation':initialize_channes(validation_annotation) | |
} | |
od_model.fit(inputs=data_channels) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment