Created
January 20, 2016 21:03
-
-
Save marcovivero/cc45d7ed9cb12c10d95a to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class LogRegLDAModel (params : LogRegLDAParams) extends ClusteringModel { | |
def transform(data : Data, featuresCol : String, clusterCol : String) : DataFrame = { | |
// Define LR Model. | |
val labels = Array("conversion", "churnThreeMonths", "churnSixMonths", "churnNineMonths") | |
val lr : LogisticRegression = new LogisticRegression() | |
.setFeaturesCol(featuresCol) | |
.setRegParam(params.regParam) | |
.setElasticNetParam(params.elasticNetParam) | |
val featureUDF : String => UserDefinedFunction = (label : String) => { | |
val weights : Array[Double] = lr | |
.setLabelCol(label) | |
.setFeaturesCol(featuresCol) | |
.fit(data.data) | |
.weights | |
.toArray | |
val prop = (weights.size * params.featureProp) | |
.toInt | |
val indices : HashSet[Int] = HashSet( | |
(0 until weights.size) | |
.sortBy(k => weights(k)) | |
.take(prop) : _* | |
) | |
functions.udf( | |
(v : Vector) => { | |
val newIndices : Array[Int] = v.asInstanceOf[SparseVector].indices | |
.filter(idx => indices.contains(idx)) | |
new SparseVector(prop, newIndices, newIndices.map(e => 1.0)) | |
} | |
) | |
} | |
val newData : DataFrame = labels.foldLeft(data.data)((b, a) => { | |
b.withColumn(featuresCol + "|" + a, featureUDF(a)(data.data(featuresCol))) | |
}) | |
val featureIndices : Array[Int] = labels | |
.map(label => newData.columns.indexOf(featuresCol + "|" + label)) | |
val idxData : RDD[(Long, Row)] = newData | |
.rdd | |
.zipWithIndex | |
.map(_.swap) | |
.persist | |
val ldaData : Seq[RDD[(Long, Vector)]] = featureIndices | |
.map(idx => idxData.map(elem => (elem._1, elem._2.getAs[Vector](idx)))) | |
val lda = new LDA() | |
.setK(params.numTopics) | |
.setAlpha(params.alpha) | |
.setBeta(params.beta) | |
val clusters : Seq[RDD[(Long, Double)]] = ldaData | |
.map(data => { | |
val model = lda.run(data).asInstanceOf[DistributedLDAModel] | |
model.topicDistributions.map { | |
case (idx, vector) => (idx, (0 until vector.size).maxBy(k => vector(k)).toDouble) | |
} | |
}) | |
val schema = StructType( | |
newData.schema.toSeq ++ | |
labels.map(label => StructField(clusterCol + "|" + label, DoubleType)) | |
) | |
val finalData : RDD[(Long, Row)] = clusters.foldLeft(idxData)((b, a) => { | |
b.join(a).map(elem => (elem._1, Row.fromSeq(elem._2._1.toSeq ++ Seq(elem._2._2)))) | |
}) | |
data.data.sqlContext.createDataFrame(finalData.map(_._2), schema) | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment