Created
August 4, 2020 20:29
-
-
Save marcwittke/d4623342a73aa29a55d7dab7551ef6cb to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using System; | |
using System.Diagnostics; | |
using System.IO; | |
using System.Linq; | |
using System.Security.Cryptography; | |
using System.Text; | |
using JetBrains.Annotations; | |
namespace TicketShop.Domain.Sales | |
{ | |
public interface ISymmetricEncryption | |
{ | |
string Encrypt(string s); | |
string Decrypt(string s); | |
} | |
public class SymmetricEncryption : ISymmetricEncryption | |
{ | |
[NotNull] private readonly string _passPhrase; | |
public SymmetricEncryption([NotNull] string passPhrase) | |
{ | |
_passPhrase = passPhrase ?? throw new ArgumentNullException(nameof(passPhrase)); | |
} | |
public string Encrypt([NotNull] string s) | |
{ | |
if (s == null) throw new ArgumentNullException(nameof(s)); | |
return StringCipher.Encrypt(s, _passPhrase); | |
} | |
public string Decrypt([NotNull] string s) | |
{ | |
if (s == null) throw new ArgumentNullException(nameof(s)); | |
return StringCipher.Decrypt(s, _passPhrase); | |
} | |
} | |
public static class StringCipher | |
{ | |
// This constant is used to determine the key size of the encryption algorithm in bits. | |
// We divide this by 8 within the code below to get the equivalent number of bytes. | |
private const int Keysize = 128; | |
// This constant determines the number of iterations for the password bytes generation function. | |
private const int DerivationIterations = 1000; | |
public static string Encrypt(string plainText, string passPhrase) | |
{ | |
// Salt and IV is randomly generated each time, but is prepended to encrypted cipher text | |
// so that the same Salt and IV values can be used when decrypting. | |
var saltStringBytes = Generate128BitsOfRandomEntropy(); | |
var ivStringBytes = Generate128BitsOfRandomEntropy(); | |
var plainTextBytes = Encoding.UTF8.GetBytes(plainText); | |
using (var password = new Rfc2898DeriveBytes(passPhrase, saltStringBytes, DerivationIterations)) | |
{ | |
var keyBytes = password.GetBytes(Keysize / 8); | |
using (var cryptoAlgorithm = Aes.Create()) | |
{ | |
Debug.Assert(cryptoAlgorithm != null, nameof(cryptoAlgorithm) + " != null"); | |
cryptoAlgorithm.BlockSize = 128; | |
cryptoAlgorithm.Mode = CipherMode.CBC; | |
cryptoAlgorithm.Padding = PaddingMode.PKCS7; | |
using (ICryptoTransform encryptor = cryptoAlgorithm.CreateEncryptor(keyBytes, ivStringBytes)) | |
{ | |
using (var memoryStream = new MemoryStream()) | |
{ | |
using (var cryptoStream = new CryptoStream(memoryStream, encryptor, CryptoStreamMode.Write)) | |
{ | |
cryptoStream.Write(plainTextBytes, 0, plainTextBytes.Length); | |
cryptoStream.FlushFinalBlock(); | |
// Create the final bytes as a concatenation of the random salt bytes, the random iv bytes and the cipher bytes. | |
var cipherTextBytes = saltStringBytes; | |
cipherTextBytes = cipherTextBytes.Concat(ivStringBytes).ToArray(); | |
cipherTextBytes = cipherTextBytes.Concat(memoryStream.ToArray()).ToArray(); | |
return Convert.ToBase64String(cipherTextBytes); | |
} | |
} | |
} | |
} | |
} | |
} | |
public static string Decrypt(string cipherText, string passPhrase) | |
{ | |
// Get the complete stream of bytes that represent: | |
// [32 bytes of Salt] + [32 bytes of IV] + [n bytes of CipherText] | |
var cipherTextBytesWithSaltAndIv = Convert.FromBase64String(cipherText); | |
// Get the salt bytes by extracting the first 32 bytes from the supplied cipherText bytes. | |
var saltStringBytes = cipherTextBytesWithSaltAndIv.Take(Keysize / 8).ToArray(); | |
// Get the IV bytes by extracting the next 32 bytes from the supplied cipherText bytes. | |
var ivStringBytes = cipherTextBytesWithSaltAndIv.Skip(Keysize / 8).Take(Keysize / 8).ToArray(); | |
// Get the actual cipher text bytes by removing the first 64 bytes from the cipherText string. | |
var cipherTextBytes = cipherTextBytesWithSaltAndIv.Skip((Keysize / 8) * 2).Take(cipherTextBytesWithSaltAndIv.Length - ((Keysize / 8) * 2)).ToArray(); | |
using (var password = new Rfc2898DeriveBytes(passPhrase, saltStringBytes, DerivationIterations)) | |
{ | |
var keyBytes = password.GetBytes(Keysize / 8); | |
using (var cryptoAlgorithm = Aes.Create()) | |
{ | |
Debug.Assert(cryptoAlgorithm != null, nameof(cryptoAlgorithm) + " != null"); | |
cryptoAlgorithm.BlockSize = 128; | |
cryptoAlgorithm.Mode = CipherMode.CBC; | |
cryptoAlgorithm.Padding = PaddingMode.PKCS7; | |
using (ICryptoTransform decryptor = cryptoAlgorithm.CreateDecryptor(keyBytes, ivStringBytes)) | |
{ | |
using (var memoryStream = new MemoryStream(cipherTextBytes)) | |
{ | |
using (var cryptoStream = new CryptoStream(memoryStream, decryptor, CryptoStreamMode.Read)) | |
{ | |
var plainTextBytes = new byte[cipherTextBytes.Length]; | |
var decryptedByteCount = cryptoStream.Read(plainTextBytes, 0, plainTextBytes.Length); | |
return Encoding.UTF8.GetString(plainTextBytes, 0, decryptedByteCount); | |
} | |
} | |
} | |
} | |
} | |
} | |
private static byte[] Generate128BitsOfRandomEntropy() | |
{ | |
var randomBytes = new byte[16]; // 16 Bytes will give us 128 bits. | |
using (var rngCsp = RandomNumberGenerator.Create()) | |
{ | |
// Fill the array with cryptographically secure random bytes. | |
rngCsp.GetBytes(randomBytes); | |
} | |
return randomBytes; | |
} | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment