Last active
November 13, 2024 04:25
-
-
Save marduk191/1252b3b7bf679441490cf86b0b144f59 to your computer and use it in GitHub Desktop.
Comfyui Tranformers node for internlm-xcomposer2-4khd-7b
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import os | |
import folder_paths | |
from transformers import AutoModel, AutoTokenizer | |
class InternLMXComposer2: | |
def __init__(self): | |
self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
self.model = None | |
self.tokenizer = None | |
@classmethod | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
"prompt": ("STRING", {"default": "Illustrate the fine details present in the image"}), | |
"hd_num": ("INT", {"default": 55, "min": 1, "max": 100}), | |
"num_beams": ("INT", {"default": 3, "min": 1, "max": 10}), | |
} | |
} | |
RETURN_TYPES = ("STRING",) | |
FUNCTION = "generate_description" | |
CATEGORY = "image/text" | |
def load_model(self): | |
if self.model is None: | |
print("Loading InternLM-XComposer2 model...") | |
self.model = AutoModel.from_pretrained( | |
'internlm/internlm-xcomposer2-4khd-7b', | |
torch_dtype=torch.bfloat16, | |
trust_remote_code=True | |
).to(self.device).eval() | |
self.tokenizer = AutoTokenizer.from_pretrained( | |
'internlm/internlm-xcomposer2-4khd-7b', | |
trust_remote_code=True | |
) | |
print("Model loaded successfully!") | |
def generate_description(self, image, prompt, hd_num=55, num_beams=3): | |
self.load_model() | |
import tempfile | |
import numpy as np | |
from PIL import Image | |
# Format the prompt with <ImageHere> token | |
formatted_prompt = f"<ImageHere>{prompt}" | |
# Convert tensor to numpy array | |
image_np = image.cpu().numpy() | |
# Handle different image formats | |
if len(image_np.shape) == 4: | |
image_np = image_np[0] # Remove batch dimension if present | |
# Convert to RGB if grayscale | |
if image_np.shape[0] == 1: # Grayscale | |
image_np = np.repeat(image_np, 3, axis=0) | |
# Ensure correct channel order and shape | |
if image_np.shape[0] in [3, 4]: # If channels first | |
image_np = np.transpose(image_np, (1, 2, 0)) | |
# Handle alpha channel if present | |
if image_np.shape[-1] == 4: | |
image_np = image_np[..., :3] | |
# Scale values to 0-255 range if needed | |
if image_np.max() <= 1.0: | |
image_np = (image_np * 255).astype(np.uint8) | |
else: | |
image_np = image_np.astype(np.uint8) | |
# Convert to PIL Image | |
pil_image = Image.fromarray(image_np) | |
# Ensure RGB mode | |
if pil_image.mode != 'RGB': | |
pil_image = pil_image.convert('RGB') | |
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmp_file: | |
pil_image.save(tmp_file.name) | |
tmp_path = tmp_file.name | |
try: | |
with torch.cuda.amp.autocast(): | |
response, _ = self.model.chat( | |
self.tokenizer, | |
query=formatted_prompt, | |
image=tmp_path, | |
hd_num=hd_num, | |
history=[], | |
do_sample=False, | |
num_beams=num_beams | |
) | |
finally: | |
# Clean up temporary file | |
os.unlink(tmp_path) | |
return (response,) | |
# Node class registration | |
NODE_CLASS_MAPPINGS = { | |
"InternLMXComposer2": InternLMXComposer2 | |
} | |
NODE_DISPLAY_NAME_MAPPINGS = { | |
"InternLMXComposer2": "InternLM XComposer2" | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment