Last active
November 12, 2025 07:15
-
-
Save marekyggdrasil/2879e5b4196fde6109f755d4b504d797 to your computer and use it in GitHub Desktop.
Simulation of the 1D Tight-Binding Model, full tutorial https://mareknarozniak.com/2020/05/07/tight-binding/
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| from qutip import basis | |
| def _ket(n, N): | |
| return basis(N, n) | |
| def _bra(n, N): | |
| return basis(N, n).dag() | |
| # spacing between atoms | |
| a = 2 | |
| # number of atoms | |
| N = 23 | |
| # total length of the 1D chain | |
| L = N*a | |
| # onsite energy | |
| eps = 0.25 | |
| # hopping matrix element | |
| t = 0.5 | |
| # construct the Hamiltonian | |
| H = sum([eps*_ket(n, L)*_bra(n, L) for n in range(0, L)]) | |
| H -= sum([t*_ket(n, L)*_bra(n + 1, L) for n in range(0, L - 1)]) | |
| H -= sum([t*_ket(n, L)*_bra(n - 1, L) for n in range(1, L)]) | |
| if N <= 8: | |
| print('Hamiltonian') | |
| print(H) | |
| evals, ekets = H.eigenstates() | |
| if N <= 8: | |
| print() | |
| print('Eigenvalues') | |
| print(evals) | |
| # satisfy periodic boundary conditions we need E(-k) = E(k) | |
| numerical = np.concatenate((np.flip(evals, 0), evals), axis=0) | |
| k = np.linspace(-np.pi/a, np.pi/a, 2*L) | |
| exact = eps - 2.*t*np.cos(k*a) | |
| xticks = np.linspace(-np.pi/a, np.pi/a, 9) | |
| xlabels = ['' for k in xticks] | |
| xlabels[0] = '$-\\frac{\pi}{a}$' | |
| xlabels[-1] = '$\\frac{\pi}{a}$' | |
| fig, axs = plt.subplots() | |
| axs.set_xlim(-np.pi/a, np.pi/a) | |
| axs.set_title('Tight-Binding Model, $N='+str(N)+', a='+str(a)+'$') | |
| axs.set_ylabel('$E$') | |
| axs.set_xlabel('$ka$') | |
| axs.axvline(x=0., color='k') | |
| axs.plot(k, numerical, 'ro', label='Eigenvalues of H') | |
| axs.plot(k, exact, label='$E(k) = \epsilon_0 - 2 t \cos(ka)$') | |
| axs.set_yticks([eps-2.*t, eps-t, eps, eps+t, eps+2.*t]) | |
| axs.set_yticklabels(['$\epsilon_0-2t$', '$\epsilon_0-t$', '$\epsilon_0$', '$\epsilon_0+t$', '$\epsilon_0+2t$']) | |
| axs.set_xticks(xticks) | |
| axs.set_xticklabels(xlabels) | |
| axs.legend() | |
| axs.grid(True) | |
| # fig.savefig('tight_binding_theory.png') | |
| fig.savefig('tight_binding_diag.png') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment


Hi, thanks for your example and the nice plotting!
For the Eigenvalue based approach, you would need to extract the k-values from the Eigenkets.
Otherwise, you will pair the Eigenvalues, which are sorted by magnitude, just with the way you created your k-values.