Created
October 5, 2018 17:53
-
-
Save markroxor/86d62360836fd16b65bf10ebf641473f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sys | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from scipy.spatial import ConvexHull | |
eps = np.random.rand(1)/100 | |
def on_segment(p, q, r): | |
return ((q[0] <= max(p[0], r[0])) and (q[0] >= min(p[0], r[0])) | |
and q[1] <= max(p[1] , r[1]) and q[1] >= min(p[1], r[1])) | |
def orientation(p, q, r): | |
val = (q[1] - p[1]) * (r[0] - q[0]) - \ | |
(q[0] - p[0]) * (r[1] - q[1]) | |
if val == 0: | |
return 0 | |
elif val > 0: | |
return 1 | |
else: | |
return -1 | |
def intersect(p1, q1, p2, q2): | |
o1 = orientation(p1, q1, p2) | |
o2 = orientation(p1, q1, q2) | |
o3 = orientation(p2, q2, p1) | |
o4 = orientation(p2, q2, q1) | |
if (o1 != o2 and o3 != o4): | |
return True | |
if (o1 == 0 and on_segment(p1, p2, q1)): | |
return True | |
if (o2 == 0 and on_segment(p1, q2, q1)): | |
return True | |
if (o3 == 0 and on_segment(p2, p1, q2)): | |
return True | |
if (o4 == 0 and on_segment(p2, q1, q2)): | |
return True | |
return False | |
def is_inside(pts, p): | |
# taken from https://www.geeksforgeeks.org/how-to-check-if-a-given-point-lies-inside-a-polygon/ | |
eps = 0.0001 | |
# to avoid a special case where ray from point to infinity crosses the two vertices of the polygon. | |
# and all these three points become collinear. | |
p[0] += eps | |
p[1] += eps | |
n = len(pts) | |
extreme = (sys.maxsize, p[1]) | |
count = 0 | |
i = 0 | |
for i in range(n): | |
_next = (i + 1) % n | |
if intersect(pts[i], pts[_next], p, extreme): | |
if orientation(pts[i], p, pts[_next]) == 0: | |
return on_segment(pts[i], p, pts[_next]) | |
count += 1 | |
return bool(count & 1) | |
def get_line(pt1, pt2): | |
if pt1[0] == pt2[0]: | |
return sys.maxsize, pt1[0] | |
m = (pt2[1] - pt1[1])/(pt2[0] - pt1[0]) | |
c = (pt1[1]*pt2[0] - pt2[1]*pt1[0]) / (pt2[0] - pt1[0]) | |
return m, c | |
def get_line_intersection(m1, c1, m2, c2): | |
x = (c2 - c1)/(m1 - m2) | |
y = m1 * x + c1 | |
return x, y | |
def get_length(pt1, pt2): | |
a = pt1[0] - pt2[0] | |
a = np.square(a) | |
b = pt1[1] - pt2[1] | |
b = np.square(b) | |
return np.sqrt(a + b) | |
def is_on_segment(pt1, pt2, pt3, pt4, pt, eps=-0.001): | |
x1, y1 = pt1 | |
x2, y2 = pt2 | |
x3, y3 = pt3 | |
x4, y4 = pt4 | |
x, y = pt | |
return eps<=max(y1, y2)-y and y-min(y1, y2)>=eps and eps<=max(y3, y4)-y and y-min(y3, y4)>=eps and \ | |
eps<=max(x1, x2)-x and x-min(x1, x2)>=eps and eps<=max(x3, x4)-x and x-min(x3, x4)>=eps | |
def get_intersection(poly1, poly2): | |
print("\n\n") | |
print(poly1) | |
print(poly2) | |
intersecting_coords = [] | |
for c in poly1[:-1]: | |
if is_inside(poly2[:-1], c): | |
intersecting_coords.append((c[0], c[1])) | |
plt.scatter(c[0], c[1]) | |
for c in poly2[:-1]: | |
if is_inside(poly1[:-1], c): | |
intersecting_coords.append((c[0], c[1])) | |
plt.scatter(c[0], c[1]) | |
for i1, c1 in enumerate(poly1[:-1]): | |
for i2, c2 in enumerate(poly2[:-1]): | |
pt1, pt2 = (poly1[i1], poly1[(i1+1)%len(poly1)]) | |
x1, y1 = pt1 | |
x2, y2 = pt2 | |
pt3, pt4 = (poly2[i2], poly2[(i2+1)%len(poly2)]) | |
x3, y3 = pt3 | |
x4, y4 = pt4 | |
m1, c1 = get_line(pt1, pt2) | |
m2, c2 = get_line(pt3, pt4) | |
if m1 == m2 and c1 == c2: | |
if get_length(pt1, pt2) < get_length(pt3, pt4): | |
intersecting_coords.append(pt1) | |
intersecting_coords.append(pt2) | |
plt.scatter(pt1, pt2) | |
else: | |
intersecting_coords.append(pt3) | |
intersecting_coords.append(pt4) | |
plt.scatter(pt3, pt4) | |
elif m1!=m2: | |
if m1 == sys.maxsize: | |
x = x1 | |
y = m2 * x1 + c2 | |
if is_on_segment(pt1, pt2, pt3, pt4, (x, y)): | |
intersecting_coords.append((x, y)) | |
plt.scatter(x, y) | |
elif m2 == sys.maxsize: | |
x = x3 | |
y = m1 * x3 + c1 | |
if is_on_segment(pt1, pt2, pt3, pt4, (x, y)): | |
intersecting_coords.append((x, y)) | |
plt.scatter(x, y) | |
elif m1 == 0: | |
y = y1 | |
x = (y1 - c2) / m2 | |
if is_on_segment(pt1, pt2, pt3, pt4, (x, y)): | |
intersecting_coords.append((x, y)) | |
plt.scatter(x, y) | |
elif m2 == 0: | |
y = y3 | |
x = (y3 - c1) / m1 | |
if is_on_segment(pt1, pt2, pt3, pt4, (x, y)): | |
intersecting_coords.append((x, y)) | |
plt.scatter(x, y) | |
else: | |
x, y = get_line_intersection(m1, c1, m2, c2) | |
_m1 = y - pt1[1] | |
_m1 /= (x - pt1[0]) | |
_m2 = y - pt2[1] | |
_m2 /= (x - pt2[0]) | |
_m3 = y - pt3[1] | |
_m3 /= (x - pt3[0]) | |
_m4 = y - pt4[1] | |
_m4 /= (x - pt4[0]) | |
if _m1 * _m2 < 0 and _m3 * _m4 < 0: | |
intersecting_coords.append((x, y)) | |
plt.scatter(x, y) | |
else: | |
print('do not intersect parallel') | |
intersecting_coords = np.array(intersecting_coords) | |
hull = ConvexHull(intersecting_coords) | |
intersecting_coords = intersecting_coords[hull.vertices] | |
intersecting_coords = np.append(intersecting_coords, [intersecting_coords[0]], axis=0) | |
x, y = intersecting_coords.T | |
print(intersecting_coords) | |
print(len(intersecting_coords)) | |
x1, y1 = poly1.T | |
x2, y2 = poly2.T | |
plt.plot(x1, y1) | |
plt.plot(x2, y2) | |
plt.plot(x, y, c='k') | |
plt.show() | |
poly1 = np.array([[451.8107, 173.44763], | |
[531.7912, 173.45604], | |
[533.50757, 222.04575], | |
[453.52707, 222.03732], | |
[451.8107, 173.44763]]) | |
poly2 = np.array([[449.92476, 172.5057 ], | |
[530.552293, 172.5057 ], | |
[530.552293, 220.237058], | |
[449.92476, 220.237058], | |
[449.92476, 172.5057 ]]) | |
get_intersection(poly1, poly2) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
This finds intersection of two quadrilaterals, the intersecting region is bound by black boundary.
