Skip to content

Instantly share code, notes, and snippets.

@markus-beuckelmann
Created April 30, 2017 13:06
Show Gist options
  • Save markus-beuckelmann/8bc25531b11158431a5b09a45abd6276 to your computer and use it in GitHub Desktop.
Save markus-beuckelmann/8bc25531b11158431a5b09a45abd6276 to your computer and use it in GitHub Desktop.
A short Python script to benchmark NumPy and show your BLAS setup
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
# Roughly based on: http://stackoverflow.com/questions/11443302/compiling-numpy-with-openblas-integration
from __future__ import print_function
import numpy as np
from time import time
# Let's take the randomness out of random numbers (for reproducibility)
np.random.seed(0)
size = 4096
A, B = np.random.random((size, size)), np.random.random((size, size))
C, D = np.random.random((size * 128,)), np.random.random((size * 128,))
E = np.random.random((int(size / 2), int(size / 4)))
F = np.random.random((int(size / 2), int(size / 2)))
F = np.dot(F, F.T)
G = np.random.random((int(size / 2), int(size / 2)))
# Matrix multiplication
N = 20
t = time()
for i in range(N):
np.dot(A, B)
delta = time() - t
print('Dotted two %dx%d matrices in %0.2f s.' % (size, size, delta / N))
del A, B
# Vector multiplication
N = 5000
t = time()
for i in range(N):
np.dot(C, D)
delta = time() - t
print('Dotted two vectors of length %d in %0.2f ms.' % (size * 128, 1e3 * delta / N))
del C, D
# Singular Value Decomposition (SVD)
N = 3
t = time()
for i in range(N):
np.linalg.svd(E, full_matrices = False)
delta = time() - t
print("SVD of a %dx%d matrix in %0.2f s." % (size / 2, size / 4, delta / N))
del E
# Cholesky Decomposition
N = 3
t = time()
for i in range(N):
np.linalg.cholesky(F)
delta = time() - t
print("Cholesky decomposition of a %dx%d matrix in %0.2f s." % (size / 2, size / 2, delta / N))
# Eigendecomposition
t = time()
for i in range(N):
np.linalg.eig(G)
delta = time() - t
print("Eigendecomposition of a %dx%d matrix in %0.2f s." % (size / 2, size / 2, delta / N))
print('')
print('This was obtained using the following Numpy configuration:')
np.__config__.show()
@cauchy7203
Copy link

Results on different platform will be much more useful.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment