Created
January 31, 2021 01:16
-
-
Save marl0ny/9df46dd3e42213786aa3c753655d5677 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
"""Plots and animations of single particle quantum mechanics phenomena in 1D | |
by discretizing the Hamiltonian. This method is described here: | |
https://wiki.physics.udel.edu/phys824/Discretization_of_1D_continuous_Hamiltonian | |
""" | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import matplotlib.animation as animation | |
from numpy.linalg import eigh, eig | |
n = 512 | |
length = 64.0 | |
x = np.linspace(-length/2, length/2 - length/(2*n), n) | |
dx = x[1] - x[0] | |
V = 50.0*(x/length)**2 | |
hbar = 1.0 | |
m = 1.0 | |
H = np.zeros((n, n), np.complex128) | |
for i in range(n): | |
if i-1 >= 0: H[i-1, i] = (-hbar**2/(2*m))/dx**2 | |
H[i, i] = V[i] - 2.0*(-hbar**2/(2*m))/dx**2 | |
if i+1 < n: H[i+1, i] = (-hbar**2/(2*m))/dx**2 | |
# periodic conditions | |
# H[n-1, 0] = (-hbar**2/(2*m))/dx**2 | |
# H[0, n-1] = (-hbar**2/(2*m))/dx**2 | |
vals, vects = eigh(H) | |
for i in range(0, 3): | |
plt.plot(x, np.real(vects.T[i]), label=r"$\psi_{%d}(x)$" % i) | |
plt.xlim(x[0], x[-1]) | |
plt.title("Eigenstates") | |
plt.legend() | |
plt.grid() | |
plt.show() | |
plt.close() | |
fig = plt.figure() | |
ax = fig.add_subplot(1, 1, 1) | |
ax.set_xlim(x[0], x[-1]) | |
ax.set_ylim(-1.1, 1.1) | |
psi0 = np.exp(-((x+length/4.0)/length)**2/0.05**2) # *np.exp(30.0j*np.pi*x/length) | |
coeffs = np.dot(psi0, vects) | |
line1, = ax.plot(x, np.real(psi0), label="$Re(\psi(x))$") | |
line2, = ax.plot(x, np.imag(psi0), label="$Im(\psi(x))$") | |
line3, = ax.plot(x, np.abs(psi0), color="black", label="$|\psi(x)|$") | |
line4, = ax.plot(x, 10*V/50.0, color="gray", label="V(x)") | |
line1.t = 0.0 | |
def animation_func(*args): | |
line1.t += 0.01 | |
psi = np.dot(coeffs*np.exp(-1.0j*vals*line1.t/hbar), vects.T) | |
line1.set_ydata(np.real(psi)) | |
line2.set_ydata(np.imag(psi)) | |
line3.set_ydata(np.abs(psi)) | |
return line1, line2, line3 | |
main_animation = animation.FuncAnimation(fig, animation_func, blit=True, interval=1.0) | |
plt.legend() | |
plt.grid() | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment